

UNIVERSIDADE FEDERAL RURAL

DE PERNAMBUCO Pró-Reitoria de Pesquisa e Pós-Graduação

PROGRAMA DE PÓS-GRADUAÇÃO EM FITOPATOLOGIA

Tese de Doutorado

Grupos de anastomose de *Rhizoctonia*: diversidade em brássicas e tomate no Brasil e utilidade do gene RPB2 para análise filogenética

Graziele Santos Lima

Recife - PE 2020

GRAZIELE SANTOS LIMA

GRUPOS DE ANASTOMOSE DE *RHIZOCTONIA*: DIVERSIDADE EM BRÁSSICAS E TOMATE NO BRASIL E UTILIDADE DO GENE RPB2 PARA ANÁLISE FILOGENÉTICA

Tese apresentada ao Programa de Pós-graduação em Fitopatologia da Universidade Federal Rural de Pernambuco, como parte dos requisitos para obtenção do título de Doutora em Fitopatologia.

COMITÊ DE ORIENTAÇÃO:

Orientador: Prof. Dr. Sami Jorge Michereff

Coorientador: Prof. Dr. Alexandre Reis Machado

Coorientadora: Prof. Dra. Kamila Câmara Correia

RECIFE - PE SETEMBRO - 2020 Dados Internacionais de Catalogação na Publicação (CIP) Sistema Integrado de Bibliotecas da UFRPE Biblioteca Central, Recife-PE, Brasil

L732g	Lima, Graziele Santos Grupos de anastomose de <i>Rhizoctonia</i> : diversidade em brássicas e tomate no Brasil e utilidade do gene RPB2 para análise filogenética / Graziele Santos Lima. – 2020. 87 f. : il.
	Orientador: Sami Jorge Michereff. Coorientadores: Alexandre Reis Machado, Kamila Câmara Correia. Tese (Doutorado) – Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Fitopatologia, Recife, BR-PE, 2020. Inclui referências.
	 Fitopatologia 2. Teoria bayesiana de decisão estatística Inferência (Lógica) 4. Hortaliça 5. Análise cladística 6. Tomate – Doenças e pragas 7. Anastomose 8. Queima da saia 9. <i>Rhizoctonia</i> <i>solani</i> I. Michereff, Sami Jorge, orient. II. Machado, Alexandre Reis, coorient. III. Correia, Kamila Câmara, coorient. IV. Título

GRUPOS DE ANASTOMOSE DE RHIZOCTONIA: DIVERSIDADE EM BRÁSSICAS E TOMATE NO BRASIL E UTILIDADE DO GENE RPB2 PARA ANÁLISE FILOGENÉTICA

GRAZIELE SANTOS LIMA

Tese defendida e aprovada pela Banca Examinadora em: 25/09/2020

ORIENTADOR:

Ch

Prof. Sami Jorge Michereff (UFCA)

EXAMINADORES:

Nercundre Reis Machado Prof. Alexandre Reis Machado (UFPE)

Prof. André Angelo Medeiros Gomes (UFRPE)

Prof. Juan Manuel Tovar Pedraza (CIAD)

Paulo Ceresini.

Prof. Paulo Cezar Ceresini (UNESP)

RECIFE - PE SETEMBRO - 2020

Aos meus pais, Marlene Santos Lima e Paulo Henrique Lima.

DEDICO

AGRADECIMENTOS

À Deus, pelo dom da vida, por ter me dado forças para chegar até aqui, pela sua infinita bondade e proteção constante.

Aos meus pais, Marlene e Paulo, pelo amor, apoio, confiança e ensinamentos de vida.

Ao meu amor, Elthon Diego, pelo incentivo e companheirismo.

À Universidade Federal Rural de Pernambuco (UFRPE), pela oportunidade para a realização do doutorado.

Ao Departamento de Micologia Prof. Chaves Batista da Universidade Federal de Pernambuco (UFPE), por ter cedido sua estrutura para o desenvolvimento da pesquisa.

Ao Conselho Nacional de Desenvolvimento Científico (CNPq), pelo apoio financeiro.

Ao professor Dr. Sami Jorge Michereff, pela orientação, aprendizado, paciência e ensinamentos transmitidos.

Aos meus coorientadores, Prof. Dr. Alexandre Reis Machado e Prof. Dra. Kamila Câmara Correia, pelo apoio durante o desenvolvimento deste trabalho.

Ao Dr. Ailton Reis, pelo fornecimento de parte dos isolados utilizados.

Ao corpo docente do Programa de Pós-Graduação em Fitopatologia, pelos ensinamentos transmitidos.

A toda equipe do laboratório de Epidemiologia, em especial à Kledson, Ellen, Fábio, Lucas, Ana Paula e Tamiris.

Aos meus amigos e colegas, Samara, Aline, Júnior Estrela, Alba, Angélica, Claudeana, Ana Karoline, Roselane, Risoneide, Carmem, Suzi, Isabella, Roberto e Jefferson, pelos momentos compartilhados.

A todos aqueles que contribuíram direta ou indiretamente para a realização deste trabalho.

SUMÁRIO

RESUMO GERAL	vii
GENERAL ABSTRACT	viii
CAPÍTULO I	v
INTRODUÇÃO GERAL	10
1. A horticultura no Brasil	10
2. A cultura das brássicas	
3. A cultura do tomateiro	12
4. Doenças das hortaliças	14
5. Rizoctoniose das hortaliças	15
6. O gênero Rhizoctonia	16
7. Grupos de anastomose de Rhizoctonia associados a brássicas e tomate	
8. Identificação molecular de grupos de anastomose de Rhizoctonia	
Referências Bibliográficas	
CAPÍTULO II - Diversity of <i>Rhizoctonia</i> anastomosis groups associated with brassicas and tomato in Brazil	h vegetable
Acknowledgments	
Compliance with Ethical Standards	
References	
CAPÍTULO III - Usefulness of the RPB2 gene for <i>Rhizoctonia</i> anastomosis group and identification	s phylogeny 63
Acknowledgments	71
Compliance with Ethical Standards	71
References	71
CONCLUSÕES GERAIS	85

RESUMO GERAL

A rizoctoniose, doença causada por fungos do gênero Rhizoctonia, é um dos principais fatores que limita o desenvolvimento de hortaliças, como brássicas e tomate. O critério mais importante para delinear espécies de Rhizoctonia é a diferenciação por grupos de anastomose (AGs). O conhecimento dos grupos e subgrupos de anastomose é de grande importância para a compreensão da ecologia e diversidade genética do patógeno e suas possíveis implicações nas medidas de controle da doença. Dentre as técnicas de identificação de AGs de Rhizoctonia, o estudo da região ITS-rDNA é o mais utilizado, no entanto regiões gênicas mais conservadas, codificadoras de proteínas, também devem ser consideradas. O presente estudo teve como objetivos: (i) identificar grupos de anastomose de Rhizoctonia associados a espécies de brássicas e tomate no Brasil, e (ii) avaliar a utilidade do gene RPB2 para filogenia e identificação de grupos de anastomose de Rhizoctonia. Foram utilizados 112 isolados de Rhizoctonia obtidos de plantas de brássicas e tomate em oito estados brasileiros. Com base nas análises filogenéticas da região ITS, os isolados foram separados em sete grupos de anastomose, sendo três pertencentes a R. solani (AG-1-IB, AG-2-2IIIB e AG-4-HGI) e quatro a Rhizoctonia binucleada (AG-A, AG-F, AG-G e AG-R). AG-4-HGI foi o mais prevalente, presente em todos os estados brasileiros avaliados. Este foi o primeiro relato da ocorrência de AG-F associado a tomate e AG-4-HGI, AG-2-2IIIB, AG-A, AG-G e AG-R associados a brássicas no Brasil. Em um segundo momento, foram identificados, por meio de sequenciamento e reconstrução filogenética do gene RPB2, 40 isolados de R. solani e Rhizoctonia binucleada pertencentes a diferentes grupos de anastomose. Os resultados das análises filogenéticas obtidas corroboram com estudos prévios e confirmam a identidade da maioria dos isolados. A região RPB2 permitiu a separação dos AGs de Rhizoctonia em clados distintos, com valores altos de probabilidade posterior. O presente estudo revelou que o gene RPB2 tem um grande potencial para estudos filogenéticos de grupos de anastomose de Rhizoctonia, podendo ser usado como marcador alternativo à região ITS.

Palavras-chave: *Ceratobasidium* sp., Hortaliças, Inferência Bayesiana, ITS-rDNA *Thanatephorus cucumeris*

GENERAL ABSTRACT

Rhizoctoniosis, a disease caused by fungi of the genus *Rhizoctonia*, is one of the main factors that limits the development of vegetables, such as brassica and tomato. The most important criterion for delineating *Rhizoctonia* species is differentiation by anastomosis groups (AGs). The knowledge of anastomosis groups and subgroups is of great importance for understanding the ecology and genetic diversity of the pathogen and its possible implications for disease control measures. Among the Rhizoctonia AGs identification techniques, the study of the ITSrDNA region is the most used, however, more conserved gene regions, encoding proteins, should also be considered. The present study aimed: (i) to identify Rhizoctonia anastomosis groups associated with brassica and tomato species in Brazil, and (ii) evaluate the usefulness of the RPB2 gene for phylogeny and identification of Rhizoctonia anastomosis groups. One hundred and twelve Rhizoctonia isolates obtained from vegetable brassicas and tomato in eight Brazilian states were used. Based on phylogenetic analyses of the ITS region, the isolates were separated into seven anastomosis groups; three of R. solani (AG-1-IB, AG-2-2IIIB and AG-4-HGI) and four of binucleate Rhizoctonia (AG-A, AG-F, AG-G and AG-R). AG-4-HGI was the most prevalent, present in all Brazilian states surveyed. This was the first report of the occurrence of AG-F associated with tomatoes and AG-4-HGI, AG-2-2IIIB, AG-A, AG-G and AG-R associated with brassica plants in Brazil. In a second step, 40 isolates of R. solani and binucleate Rhizoctonia belonging to different anastomosis groups were identified through sequencing and phylogenetic reconstruction of the RPB2 gene. The results of the phylogenetic analyses corroborate previous studies and confirm the identity of most of the isolates. The RPB2 region allowed to separate the *Rhizoctonia* anastomosis groups into distinct clades with high posterior probability values. The present study revealed that the RPB2 gene has great potential for phylogenetic studies of *Rhizoctonia* anastomosis groups, and can be used as an alternative marker to the ITS region.

Keywords: Bayesian Inference, *Ceratobasidium* sp., ITS-rDNA, *Thanatephorus cucumeris*, Vegetables

CAPÍTULO I

Introdução Geral

GRUPOS DE ANASTOMOSE DE *RHIZOCTONIA*: DIVERSIDADE EM BRÁSSICAS E TOMATE NO BRASIL E UTILIDADE DO GENE RPB2 PARA ANÁLISE FILOGENÉTICA

INTRODUÇÃO GERAL

1. A horticultura no Brasil

Conhecidas popularmente como legumes e verduras, as hortaliças representam o maior grupo de plantas cultivadas no mundo, abrangendo mais de 100 espécies, geralmente herbáceas. (ZÁRATE; VIEIRA; VIEIRA, 2018). São caracterizadas, em sua maioria, por apresentarem consistência não lenhosa; ciclo biológico curto; cultivos em áreas relativamente pequenas; demanda por tratos culturais intensivos durante seu cultivo, além da possibilidade de consumo *in natura* (FILGUEIRA, 2003; PUIATTI, 2019).

As hortaliças são fontes de substâncias consideradas essenciais aos organismos humanos, tais como proteínas, carboidratos, sais minerais, vitaminas e fibras, que auxiliam a digestão e favorecem o funcionamento de diversos órgãos (FILGUEIRA, 2003). Além disso, oferecem efeitos protetivos ao corpo humano contra agentes potencialmente causadores de doenças. Em função dessas características protetivas, as hortaliças são então denominadas de alimentos funcionais (PUIATTI, 2019).

Há uma escassez de dados estatísticos atualizados referentes à produção de hortaliças no Brasil, porém é possível perceber que as culturas hortícolas estão em expansão no país, apresentando aumento considerável na última década. No ano de 2018, o Brasil produziu cerca de 15 milhões de toneladas de hortaliças (FAO, 2020). Essa estimativa, no entanto, não inclui todos os legumes e verduras produzidos no país. Segundo Camargo Filho e Camargo (2017), batata, tomate, cebola, melancia, cenoura, batata doce, alface e repolho são as principais hortaliças produzidos no Brasil, representando aproximadamente 60% da quantidade total.

A exploração de hortaliças no Brasil é fundamentada na agricultura familiar, na qual pequenos e médios produtores respondem por cerca de 60% da produção, principalmente de folhosas como alface e espécies da família Brassicaceae. Estima-se que a atividade de exploração de hortaliças gere quase 3 milhões de empregos diretos no país, com uma média de 2,4 trabalhadores/ha (PUIATTI, 2019).

2. A cultura das brássicas

Brassicaceae constitui a família botânica com o maior número de culturas olerícolas

relatadas. Com provável origem no Mediterrâneo (WARWICK, 2011), são plantas com relevada importância socioeconômica, fundamentais para a saúde e alimentação humana (FILGUEIRA, 2003; MELO; MADEIRA; LIMA, 2016). Apresentam alto valor nutricional, devido a presença de glucosinolatos, substâncias com reconhecidas propriedades anticancerígenas, além de vitaminas A, C, K, ácido fólico, cálcio e fibras (FILGUEIRA, 2003).

A família Brassicaceae apresenta diferenças morfológicas significativas entre as suas espécies, porém, no geral, podem ser classificadas como plantas que apresentam caule ereto, folhas geralmente verdes e grossas, inflorescência do tipo rácimo, constituída por flores pedunculadas e perianto tetrâmero. Os frutos, para a maioria das espécies, são do tipo síliqua cilíndrica, que geralmente, ao se abrirem para liberação das sementes, deixam o pedúnculo aderido à planta mãe (MOREIRA; BRAGANÇA, 2011).

No Brasil, dentre as espécies cultivadas de brássicas destacam-se o repolho (*Brassica oleracea* L. var. *capitata*.); os brócolis (*Brassica oleracea* L. var. *italica*); a couve-flor (*Brassica oleracea* L. var. *botrytis*); a couve manteiga (*Brassica oleracea* L. var. *acephala*). Também são cultivadas a couve-chinesa (*Brassica rapa* L. var. *pekinensis*); a rúcula (*Euruca sativa* L.); o rabanete (*Raphanus sativus* L.); o agrião (*Nasturtium officinale* R. Br.); a mostarda (*Brassica juncea* L.); o nabo (*Brassica napus* L.); o chingensai ou pak-choi (*Brassica rapa* L. var. *chinensis*); e a couve-de-bruxelas (*Brassica oleracea* L. var. *gemmifera*) (MELO *et al.*, 2017; MELO *et al.*, 2019).

Entre as variedades botânicas da espécie *B. oleraceae*, o repolho é a de maior importância econômica no Brasil (MELO *et al.* 2019). É uma planta herbácea, bianual, caracterizada pela produção de folhas cerosas, arredondadas, com sobreposição das folhas centrais formando uma "cabeça" compacta (FILGUEIRA, 2003). É um alimento que apresenta teores apreciáveis de β -caroteno, cálcio e vitamina C (FERREIRA; RANAL; FILGUEIRA, 2002). Segundo o IBGE (2020), a produção do repolho no Brasil no ano 2017 foi de 467.622 toneladas, superior à produção de outras brássicas importantes, como couve e brócolis.

Brócolis é uma variedade de *B. oleraceae* que apresenta um grande potencial de mercado. Sua importância vem crescendo devido a apreciação nos diferentes tipos de culinária, suas propriedades nutricionais e o teor de compostos relacionados à saúde (MELO *et al.*, 2015). As inflorescências, de coloração verde escura, com hastes grossas e tenras e botões florais nas extremidades constituem a sua parte comestível (FILGUEIRA, 2003; MELO *et al.*, 2015). É uma hortaliça rica em glucosinolato, β -caroteno, vitamina C, selênio, fibra, luteína, vitamina K, ácido fólico e minerais, que auxiliam no bom funcionamento do organismo (CARVALHO *et al.*, 2006; MELO *et al.*, 2015).

A couve-flor também é uma hortaliça de grande importância no Brasil, cultivada principalmente entre os agricultores familiares (MAY *et al.*, 2007). Caracteriza-se por apresentar folhas alongadas, com limbo elíptico e raízes com profundidade de 20 a 30 cm. Sua parte comestível é uma inflorescência imatura, que constitui uma "cabeça" de coloração branca ou creme desenvolvida sobre um caule curto (FILGUEIRA, 2003). É uma hortaliça rica em potássio e vitaminas importantes para o organismo humano. Além disso, possui 93% de água em sua composição (MAY *et al.*, 2007).

A couve-manteiga, também conhecida como couve de folha ou couve comum, assim como a couve-flor, está entre as brássicas mais cultivadas no Brasil, no entanto, diferencia-se dessa por não formar "cabeça". Caracteriza-se por apresentar caule reto que suporta a planta e emite novas folhas continuamente (FILGUERA, 2003). Comparativamente a outras hortaliças folhosas, a couve comum destaca-se por apresentar maior conteúdo de proteínas, carboidratos, fibras, cálcio, ferro, iodo, vitamina A, niacina e vitamina C (TRANI *et al.*, 2015).

3. A cultura do tomateiro

Pertencente à família Solanaceae, o tomateiro (*Solanum lycopersicum* L.) é uma das hortaliças mais importantes no Brasil e no mundo. É originário da América do Sul, na região compreendida entre o Equador e o Chile. No Brasil, a sua introdução ocorreu na época da colonização portuguesa no século XIX, entretanto, sua expansão se deu apenas no século XX, após a recessão econômica mundial em 1929 e a crise do café no estado de São Paulo, em que o tomate e outras solanáceas foram introduzidas com o objetivo de diversificação da agricultura e inserção de novas culturas (CAMARGO FILHO; CAMARGO, 2017).

Nos últimos vinte anos o mercado brasileiro mostrou-se bastante competitivo e dinâmico e, como consequência, o país tornou-se um dos principais produtores de tomate para mesa e para indústria do mundo (CAMARGO FILHO; CAMARGO, 2017; CAMARGO FILHO *et al.*, 1994). Atualmente, o Brasil é o décimo maior produtor mundial de tomate, com uma produção de 3.849.792 toneladas no ano de 2019 (AGRIANUAL, 2020). Segundo o IBGE (2020), os principais produtores são os estados de Goiás, São Paulo, Minas Gerais e Rio de Janeiro.

O tomateiro é uma planta herbácea, de caule redondo, piloso, tornando-se fibroso, com o passar dos tempos. Apresenta folhas alternadas e pecioladas, compostas por número ímpar de folíolos. As flores são hermafroditas, pequenas e amarelas, com cinco estames livres, cujas anteras soldam-se para formação de um cone que envolve o estigma (GOULD, 1992). Os frutos do tomateiro são carnosos, do tipo baga, com dois ou mais lóculos (FILGUEIRA, 2008) e apresentam em sua constituição aproximadamente 95% de água e 5% de compostos inorgânicos, ácidos, açúcares, sólidos insolúveis em álcool, dentre outras substâncias (SILVA *et al.*, 2003).

O tomate possui significativa importância nutricional, devido, principalmente, a presença de licopeno, substância responsável pela coloração do fruto. O licopeno é um carotenoide que tem efeito protetor direto contra radicais livres, atuando como um potente antioxidante protetor da camada celular do organismo humano, agindo na prevenção de diversas doenças. Em geral, quanto mais avermelhado o tomate, maior a sua concentração de licopeno (ROSA *et al.*, 2011).

Embora seja uma planta perene, o tomateiro se comporta como uma planta anual, com ciclo que varia de quatro a sete meses. A planta pode apresentar hábitos de crescimento determinado e indeterminado. Nas plantas de hábito de crescimento determinado, há crescimento vegetativo menos vigoroso, com aspecto semelhante a uma moita e formação de um cacho de flores na extremidade das hastes. No hábito indeterminado, por sua vez, ocorre a dominância da gema apical sobre as gemas laterais, característica essa que predomina na maioria das cultivares para mesa (FILGUEIRA, 2008).

A cultura do tomateiro possui duas cadeias produtivas distintas, caracterizadas pelos segmentos de mesa e de indústria. Os tomates de mesa são destinados ao consumo *in natura*, cuja finalidade engloba principalmente o consumo de frutos frescos em salada. Os segmentos de indústria englobam os produtos processados como molho, suco, extrato, purê, sumo, entre outros (NAIKA *et al.*, 2006).

De acordo com as características dos frutos, as cultivares comercias de tomate de mesa são classificadas em quatro grupos: cereja, santa Cruz, salada e italiano. O grupo cereja caracteriza-se por variedades de frutos pequenos, com elevados teores de sólidos solúveis, muito utilizados na ornamentação de pratos e couvert. As cultivares do grupo santa Cruz apresentam frutos alongados ou arredondados, com peso médio entre 80 a 220 gramas, sendo as cultivares mais conhecidas no mercado, com preço mais baixo e sabor ligeiramente ácido. O grupo salada apresenta frutos de formato globular achatado, grandes, com peso médio de 500g e coloração vermelha a rosada. As cultivares do grupo italiano apresentam frutos compridos, com polpa espessa, coloração vermelha intensa, sabor adocicado, textura e aroma acentuados (ALVARENGA, 2013; DUSI *et al.*, 1993).

4. Doenças das hortaliças

Um dos principais fatores que limita o desenvolvimento das hortaliças é o ataque de fitopatógenos, que causam danos e influenciam de forma direta ou indireta a produção de muitas culturas (BOARI; ISHIDA; SOUZA, 2017). Segundo Capucho; Barroso e Freitas (2017), as hortaliças são as culturas mais afetadas por doenças, por serem altamente suscetíveis a numerosos fitopatógenos e serem cultivadas em ambientes que favorecem o seu desenvolvimento. Dentre as doenças das hortaliças, destacam-se as provocadas por micro-organismos habitantes do solo, caracterizados por apresentarem ampla gama de hospedeiros e por produzirem estruturas de sobrevivência de longa duração. Patógenos importantes do solo incluem espécies de bactérias, nematoides e fungos (SHAFIQUE *et al.*, 2016).

Espécies dos gêneros *Ralstonia* Smith, *Pectobacterium* Hauben, *Agrobacterium* Smith & Townsend e *Streptomyces* Waksman & Henrici se destacam como importantes bactérias habitantes do solo que causam problemas em hortaliças (SHAFIQUE *et al.*, 2016). O gênero *Ralstonia* é responsável por causar a doença conhecida como murcha bacteriana, um fator limitante à produção de hortaliças, em especial o tomateiro, inviabilizando o seu cultivo em áreas infestadas por um longo período (KIM *et al.*, 2016; PLANAS-MARQUÈS *et al.*, 2020). *Pectobacterium carotovorum* subsp. *carotovorum* causa a podridão mole, um sério problema para as hortaliças, principalmente em final de ciclo (ZACZEK-MOCZYDŁOWSKA, 2019), gerando danos consideráveis em brássicas como couve-chinesa, repolho e nabo (JEONG *et al.*, 2019; MELLO *et al.*, 2011; NAZERIAN *et al.*, 2011; REN; DICKSON; PETZOLDT, 2001).

Entre os nematoides, é de grande importância o gênero *Meloidogyne* Goeldi. Conhecidos como nematoides das galhas, espécies de *Meloidogyne* causam sérios danos econômicos, sendo considerados os patógenos mais importantes de muitas culturas cultivadas em todo o mundo (YOUSSEF; LASHIEN, 2013). Em hortaliças, podem causar perdas de até 80% em campos fortemente infestados (SHAFIQUE *et al.*, 2016).

Entre os fungos, destaque especial para espécies de *Fusarium* Link, *Verticillium* Nees, *Sclerotinia* Fuckel, *Macrophomina* Petr e *Rhizoctonia* DC. Esses gêneros causam perdas na agricultura de bilhões de dólares a cada ano. *Fusarium solani* e *Rhizoctonia solani* são consideradas as espécies mais importantes, pois se desenvolvem em solos cultivados e não cultivados, infectando uma ampla variedade de hospedeiros (SHAFIQUE *et al.*, 2016).

5. Rizoctoniose das hortaliças

A rizoctoniose é uma das doenças mais frequentes e de maior intensidade nos cultivos de hortaliças. A gama de hospedeiros de *Rhizoctonia* é constituída por mais de 500 espécies de plantas, causando importantes doenças na maioria das plantas cultivadas em todo o mundo (AGARWAL, 2010; FARR; ROSSMAN, 2020; OGOSHI, 1996; PATIL; SOLANKI, 2016; YANG; LI, 2012). Em hortaliças, é responsável por perdas de até 80%, causando danos desde o início do plantio (SHAFIQUE *et al.*, 2016). Os sintomas provocados incluem tombamentos de pré e pós emergência, podridão radicular, podridão de colo, além de lesão foliar e podridão de frutos em uma variedade de hospedeiros (KUCHAREK, 2000; KURAMAE *et al.*, 2003; LOPES; ÁVILA, 2005).

Tombamento é considerado o sintoma mais comum causado por *Rhizoctonia* spp. na maioria das plantas afetadas, ocorrendo principalmente em solos frios e úmidos. As mudas mais jovens podem morrer antes ou logo depois da emergência. Após a emergência, o fungo ataca o caule das mudas, tornando-as encharcadas, macias e incapazes de sustentação, ocasionando o tombamento e morte. Em mudas mais velhas, a infecção se concentra nos tecidos corticais externos, que desenvolvem lesões alongadas, de coloração castanho-amarelada a castanho-avermelhada. Em culturas como brássicas, antes da morte da planta o caule pode adquirir a coloração preto-acastanhada, tornando-se dobradiço ou retorcido (AGRIOS, 2005).

Em plantas mais baixas, caso das maiorias das hortaliças, as folhas inferiores entram em contato com o solo, o que facilita o processo de infecção. Das folhas mais baixas, a infecção se espalha para cima até a maioria das folhas e as cabeças serem invadidas e apodrecidas, com a permeação do micélio pelos tecidos. Em frutos que ficam próximos ao solo, como por exemplo o tomate, *Rhizoctonia* spp. causa podridões, que podem aparecer inicialmente no campo, mas se espalhar para outros frutos após a colheita e durante o transporte e armazenamento (AGRIOS, 2005; GONZÁLEZ GARCÍA, 2006).

O controle da rizoctoniose é muito difícil, pois seu agente causal é um fungo habitante do solo que apresenta alta capacidade de sobrevivência na ausência do hospedeiro, possui elevada agressividade, combinada com grande habilidade de competição saprofítica, além de ser transmitido por sementes e apresentar ampla gama de hospedeiros (AGARWAL, 2010). Segundo Park (1970), citado por Kunieda-Alonso, Alfenas e Maffia (2005), escleródios de *R. solani* podem sobreviver por até seis anos em solo seco ao ar. Atualmente não há variedades comerciais de plantas cultivadas com níveis aceitáveis de resistência à doença, a rotação de culturas é pouco eficiente e o controle químico é ineficaz, inviável economicamente e de elevado impacto ambiental (AGARWAL, 2010; WELLER *et al.*, 2002).

6. O gênero Rhizoctonia

O gênero *Rhizoctonia* foi descrito inicialmente em 1815 por DeCandolle, de acordo com características que incluíam a habilidade de causar podridões em raízes, ausência de esporos e formação de escleródios (HIETALA; SEM; LILJA, 1994; STALPERS; ANDERSON, 1996). As características morfológicas do gênero compreendem a ramificação em ângulo reto, observada próxima ao septo distal em hifas jovens; presença de um septo na ramificação da hifa, próximo do seu ponto de origem; presença de septos do tipo doliporo; ausência de grampos de conexão e ausência de rizomorfas (OGOSHI, 1987; SNEH; BURPEE; OGOSHI, 1991).

A diferenciação de espécies do gênero *Rhizoctonia* pode ser baseada pelo número de núcleos por célula, morfologia do teleomorfo, grupo de anastomose, características bioquímicas e moleculares (GONZÁLEZ-GARCÍA; ONCO; SUSAN, 2006; SNEH; BURPEE; OGOSHI, 1991; YANG; LI, 2012).

A determinação do número de núcleos constitui um importante parâmetro taxonômico na identificação de isolados de *Rhizoctonia*. A partir desse parâmetro é possível separar as espécies de *Rhizoctonia* em dois grupos: *Rhizoctonia* binucleada e *Rhizoctonia* multinucleada. As espécies binucleadas, constituídas por isolados com dois núcleos por célula, incluem *R. callae* E. Castell, *R. cerealis* V. D. Hoeven, *R. endophytica* H. K. Saksena & O. Vaartaja, *R. fragariae* S. Husain & W. E. McKeen, *R. fumigata* S. Gunnell & R. K. Webster, *R. ramicola* W.A. Weber & D.A. Roberts, *R. oryzae-sativae* S. Mordue, *R. repens* N. Bernard e *R. anaticula* R. S. Currah. As espécies multinucleadas, com número de núcleos variando entre 3 a 28, compreendem *R. zeae* R. K. Voorhees, *R. oryzae* T. C. Ryker e F. S. Gooch e *R. solani* J. G. Kühn, sendo a última considerada a espécie mais importante como fitopatógeno (SNEH; BURPEE; OGOSHI, 1991).

Pertencentes ao filo *Basidiomycota*, os principais teleomorfos de *Rhizoctonia* são os gêneros *Thanatephorus* Donk., *Ceratobasidium* Rogers, *Waitea* Warcup & Talbot e *Tulasnella* Schröter (GONZÁLEZ-GARCÍA; ONCO; SUSAN, 2006). *Thanatephorus cucumeris* Donk constitui a fase teleomórfica da espécie multinucleada *R. solani* e caracteriza-se por possuir hipocnoide, basidiomas gelatinizados e hifas somáticas largas (ROBERTS, 1999). Alguns autores, por sua vez, relataram que possivelmente outras espécies de *Thanatephorus* estejam associadas a *R. solani*, como *T. sasakii* (Shirai) C.C. Tu & Kimbrough, *T. microsclerotius* (G.F. Weber) Boidin, Mugnier & Canales e *T. praticola* (Kotila) Flentje (GONZÁLEZ-GARCÍA; ONCO; SUSAN, 2006; QUEIROZ DAVID *et al.*, 2018). *Waitea circinata* Warcup & Talbot é o teleomorfo de *R. zeae* e *R. oryzae*; é considerado um complexo de espécies e divide-se em

três variedades: var. *circinata*, var. *zeae* e var. *oryzae* (LEINER; CARLING, 1994). *Ceratobasidium* é o teleomorfo da maioria das espécies binucleadas, incluindo *R. repens* e *R. oryzae-sativae*. As principais espécies de *Ceratobasidium* descritas na literatura são *C. cornigerum* D.P. Rogers, *C. gramineum* Ikata & T. Matsuura e *C. oryzae-sativae* P.S. Gunnell & R.K. Webster. As características morfológicas associadas a *Ceratobasidium* são a produção de corpos de frutificação efusos, de consistência cerácea, produzidos diretamente a partir de hifas basais; basidiósporos com altas taxas de germinação repetitiva e hifas somáticas mais estreitas, quando comparadas ao gênero *Thanatephorus* (GONZÁLEZ-GARCÍA; ONCO; SUSAN, 2006; KIRK *et al.*, 2001).

O critério mais importante para delinear espécies de *Rhizoctonia* é a diferenciação por grupos de anastomose (GÓNZALEZ *et al.*, 2016). O conceito de grupo de anastomose baseiase na premissa de que hifas de isolados da mesma espécie (independentemente da capacidade de cruzamento entre si) têm a habilidade de se reconhecer e se fundir (OGOSHI, 1987). Esse conceito tem sido amplamente aceito nos últimos anos para identificação grupos de anastomose de *R. solani* e espécies de *Rhizoctonia* binucleada, associadas a *Ceratobasidium* (CARLING, 1996; GÓNZALEZ *et al.*, 2016).

Quatro possíveis reações de anastomose podem ocorrer quando isolados de *Rhizoctonia* são pareados: C0, C1, C2 e C3. Na interação do tipo C0 não ocorre fusão; os isolados são totalmente não relacionados, sem nenhuma reação entre o isolado desconhecido e o isolado testador. No tipo C1 ocorre fusão de contato; a parede celular das hifas dos isolados entram em contato, mas não ocorre fusão, lise, penetração da parede ou contato entre membranas. A reação do tipo C2 é também denominada de anastomose imperfeita; ocorre quando a conexão da parede celular e o contato da membrana não são vistos claramente; ocorre fusão de parede celular e morte de algumas células em cada hifa envolvida na anastomose. Na reação do tipo C3 ocorre fusão perfeita; a membrana da parede celular dos dois isolados combina e acarreta uma mistura de citoplasmas vivos; essa reação somente ocorre quando os isolados pareados pertencem ao mesmo grupo de anastomose e compatibilidade vegetativa (CARLING, 1996).

Determinados grupos de anastomose têm sido divididos em subgrupos, denominados grupos intraespecíficos (ISGs), com base em evidências de reações de anastomose, patogenicidade, morfologia, testes bioquímicos, temperatura ótima de crescimento, gama de hospedeiros e critérios moleculares (CARLING; KUNINAGA; BRAINARD, 2002; OGOSHI, 1996). A diferenciação de isolados de *Rhizoctonia* em ISGs, por sua vez, não é fácil, principalmente quando baseada apenas em reações de anastomose (GONZÁLEZ-GARCÍA; ONCO; SUSAN, 2006; YANG; LI, 2012).

Até o momento são reconhecidos 13 grupos de anastomose em *R. solani*, denominados AG-1 a AG-13 (AGARWAL, 2010; DONG *et al.*, 2017; GONZÁLEZ-GARCÍA; ONCO; SUSAN, 2006; GÓNZALEZ *et al.*, 2016; INOKUTI *et al.*, 2018; YANG; LI, 2012; ZHAO *et al.*, 2019). São relatados sete ISGs dentro de AG-1 (IA, IB, IC, ID, IE, IF, IG), oito dentro de AG-2 (1 1-2t, 2 IIIB, 2 IV, 2 LP, 2 WB, 3, 4 e BI), dois dentro de AG-3 (PT e TB), três dentro de AG-4 (HG-I, HG-II e HG-III) e cinco dentro de AG-6 (HG-I, Gv1, Gv2, Gv3 e Gv4) (CARLING, 2000; GODOY-LUTZ *et al.*, 2008; SHARON *et al.*, 2006; YANG; LI, 2012). Apesar da diversidade de AGs, há evidências que somente os grupos AG-1, AG-2, AG-3 e AG-4 tenham distribuição global, prevalentes na maioria dos agroecossistemas (CARLING, 1996; CERESINI, 2014; GONZÁLEZ-GARCÍA; ONCO; SUSAN, 2006).

Em *Rhizoctonia* binucleada foram descritos ao redor do mundo 18 grupos de anastomose com teleomorfo em *Ceratobasidium*, denominados AG-A a AG-W. Destes, é conhecido que AG-J, AG-M e AG-N não pertencem mais ao gênero *Rhizoctonia*, os isolados representativos de AG-M foram perdidos e AG-T e AG-U foram reclassificados como AG-A e AG-P, respectivamente (SHARON *et al.*, 2008). Três ISGs foram relatados dentro de AG-B (Ba, Bb e B(o)), três dentro de AG-D (I, II e III) e dois dentro de AG-F (Fa e Fb) (SHARON *et al.*, 2007; YANG; LI, 2012; YANG *et al.*, 2015). Além dessa classificação por letras descrita na maioria dos países, há ainda a classificação americana, em que isolados binucleados de *Rhizoctonia* foram reunidos em sete grupos de anastomose distintos, denominados de CAG-1 a CAG-7 (BURPEE *et al.*, 1980).

7. Grupos de anastomose de Rhizoctonia associados a brássicas e tomate

Diferentes grupos de anastomose de *Rhizoctonia* causam infecção em brássicas e tomate. AG-1-IA, AG1-IB, AG-2-1, AG-4-HGI e AG-A são os AGs mais amplamente distribuídos em diferentes países, causando sintomas de *damping off*, podridão radicular, podridão de colo e podridão foliar em espécies da família Brassicaceae (HUA *et al.*, 2014; IRELAND, 2014; LI *et al.*, 2011; MISAWA; AOKI, 2017; SASAKI *et al.*, 2018; SHIM *et al.*, 2013; TÜRKKAN; KILIÇOĞLU; ERPER, 2020; YANG; CHEN; PU, 2007). Em tomate, isolados AG-2-1, AG-2-2, AG-3-PT, AG-4-HGI e AG-5 têm sido relatados, causando *damping off*, podridão de colo e podridão de frutos, além de lesões foliares (GONDAL, RALF; NAZ., 2019a; GONDAL, RALF; NAZ., 2019b; MISAWA; KUNINAGA, 2010; POURMAHDI; TAHERI, 2015).

No Brasil, estudos de diversidade de grupos de anastomose de *Rhizoctonia* associados a brássicas e tomate são escassos. Entre os AGs descritos, poucos isolados foram identificados. Bolkan e Ribeiro (1985) identificaram dois isolados pertencentes a AG-1 e AG-2 infectando rabanete e repolho, respectivamente; Kuramae *et al.* (2003) identificaram AG-4-HGI em tomate e AG-4-HGIII em brócolis; Kuramae *et al.* (2007) relataram quatro isolados de *Rhizoctonia* binucleada relacionados a CAG-7 causando infecção em couve; e Gaino *et al.* (2010) identificaram um isolado AG-1-IB em repolho.

A tabela 1 apresenta AGs de isolados de *R. solani* e *Rhizoctonia* binucleada associados a brássicas relatados no Brasil e no mundo.

 Tabela 1. Grupos de anastomose de isolados de Rhizoctonia associados a brássicas em diferentes países.

Hospedeiro	AG	País	Referência
Acelga chinesa	AG1-IA, AG1-IB, AG4-HGI, AG-A,	Vietnam	Hua et al., 2014
	AG-F		
Brócolis	AG-4-HGIII	Brasil	Kuramae et al., 2003
	AG-1-IB	Vietnam	Hua et al., 2014
	AG-2-2IV	Japão	Misawa et al., 2015
	AG2-1	Japão	Misawa et al., 2018
Brócolis chinês	AG-4-HGI	Lao PDR	Ireland, 2014
Canola	AG-2-1, AG-4, AG-2-2	Canadá	Verma, 1996
	AG-9	Canadá	Yang et al., 1996
Couve chinesa	AG-A	China	Li et al., 2011
	AG1-IB, AG1-IC	China	Shim et al., 2013
Couve-manteiga	CAG-7	Brasil	Kuramae et al., 2007
	AG-4-HGI	Japão	Sasaki et al., 2018
	AG-2-I, AG-4-HGI, AG-5, AG-A,	Turquia	Türkkan; Kılıçoğlu; Erper, 2020
	AG-Fb, AG-E, AG-K		
Couve-flor	AG1-IB, AG1-IC, AG2-I, AG2-2IIIB,	Bélgica	Pannecoucque; Van Beneden;
	AG4-HGII, AG-3, AG-5, AG-K		Höfte, 2008
Mostarda	AG-1-IB	China	Yang et al., 2005
	AG-A	China	Li et al., 2011
	AG-1-IA, AG1-ID, AG4-HGI	Vietnam	Hua et al., 2014
	AG-4	China	Jiang et al., 2016
	AG2-1	Japão	Misawa et al., 2018
Rabanete	AG-1	Brasil	Bolkan; Ribeiro, 1985
	AG-2-1	Japão	Misawa; Kurose, 2019
Repolho	AG-2	Brasil	Bolkan; Ribeiro, 1985

	AG2-1, AG-4	EUA	Rollins; Keinath; Farnham, 1999
	AG-4-HGI	China	Yang; Chen; Pu, 2007
	AG-2-I	China	Zhang et al., 2009
	AG 2-1, AG4-HGII	Reino Unido	Budge et al., 2009
	AG-1, AG-2-1	EUA	Ohkura et al., 2009
	AG-1-IB	Brasil	Gaino et al., 2010
	AG1-IA, AG1-IB, AG4-HGI, AG-A	Vietnam	Hua et al., 2014
	AG1-IC	Japão	Misawa; Aoki, 2017
	AG1-IA, AG-4-HGI	Japão	Misawa; Kurose, 2019
Repolho chinês	AG-1-IA, AG1-IB, AG1-ID, AG1-IG,	Vietnam	Hua et al., 2014
	AG2-2, AG4-HGI		
Rúcula	AG4-HGIII	Japão	Takeuchi; Horie, 2006
Nabo	AG1-IA, AG2-2, AG4-HGI	Vietnam	Hua et al., 2014
	AG-2-1	Japão	Misawa et al., 2018

A tabela 2 reuniu os trabalhos desenvolvidos identificando AGs de *R. solani* e *Rhizoctonia* binucleada associados a tomate no Brasil e no mundo. Até o momento, poucos trabalhos foram publicados.

Tabela 2. Grupos de anastomose de isolados de *Rhizoctonia* associados a tomate em diferentes países.

Hospedeiro	AG	País	Referência
Tomate	AG-F, AG-R	EUA	Burpee et al., 1980
	AG-4	Turquia	Yildiz; Doken, 2002
	AG-4-HGI	Brasil	Kuramae et al., 2003
	AG3-PT, AG2-Nt	Japão	Misawa; Kuninaga, 2010
	AG-3	EUA	Bartz et al., 2010
	AG-3-PT, AG-2-1, AG-2-2, AG-4-HGI,	Paquistão	Gondal; Rauf; Naz, 2019a; 2019b
	AG-5		

8. Identificação molecular de grupos de anastomose de Rhizoctonia

A determinação dos AGs de *Rhizoctonia* foi realizada durante muitos anos somente pelo pareamento de hifas com isolados testadores (CARLING, 1996; KUNINAGA, 2002; SNEH; BURPEE; OGOSHI, 1991). Contudo, alguns problemas foram constatados com a utilização desse método clássico (CARLING, 1996; SHARON *et al.*, 2006; SNEH; BURPEE; OGOSHI, 1991). O pareamento permite, muitas vezes, variação frequente na fusão de hifas, levando a

erros de identificação, além de exigir grande demanda de tempo e experiência (SHARON *et al.*, 2006; SNEH; BURPEE; OGOSHI, 1991). Além do mais, a maioria dos laboratórios não tem isolados testadores dos diferentes AGs para a realização dos pareamentos, o que dificulta ainda mais o uso dessa metodologia. Diante disso, técnicas moleculares vêm sendo utilizadas para a identificação precisa e alocação dos isolados de *Rhizoctonia* nos diferentes AGs descritos.

Os AGs de *Rhizoctonia* podem ser definidos por reação da cadeia em polimerase (PCR) da região espaçadora interna transcrita (ITS) do DNA ribossômico (rDNA) e posterior sequenciamento; hibridização DNA/DNA; gel de eletroforese em campo pulsado; polimorfismo do DNA amplificado ao acaso (RAPD); polimorfismo do comprimento dos fragmentos restringidos (RFLP) e polimorfismo do comprimento dos fragmentos amplificados (AFLP) (AGARWAL, 2010; BOYSEN *et al.*, 1996; GONZÁLEZ-GARCÍA; ONCO; SUSAN, 2006; KUNINAGA *et al.*, 1997). Dentre essas técnicas, a análise da região ITS rDNA é a mais utilizada, por oferecer suporte filogenético molecular para a maioria dos grupos de anastomose (AGARWAL, 2010; AIELLO *et al.*, 2017; INOKUTI *et al.*, 2018; MISAWUA; KUROSE 2019; YANG *et al.*, 2017).

O rDNA nuclear em fungos é organizado como uma unidade repetitiva, na qual se encontram os genes 18S, 5.8S e 28S (ELDER JR; TURNER, 1995). A região ITS está localizada entre os genes 18S e 28S, e inclui as regiões ITS1 e ITS2, separadas pelo gene 5.8S (SCHOCH *et al.*, 2012). Em fungos, é uma região que contém aproximadamente 600 pares de bases (BUEE *et al.*, 2009). É o marcador fúngico mais abundante nos bancos de dados; apresenta natureza multicópia, que facilita a amplificação de regiões de baixa qualidade; possui primers universais que distinguem suficientemente muitas espécies de fungos. A região ITS-rDNA é, ainda, considerada o DNA *barcoding* para a maioria das espécies fúngicas (SCHOCH *et al.*, 2012).

Apesar do uso frequente da região ITS-rDNA para identificação molecular de fungos, o uso individual dessa região nem sempre distingue suficientemente espécies fúngicas de níveis taxonômicos mais elevados, devido a limitações, como dificuldades no alinhamento de sequências, por efeito de características relacionadas ao acúmulo de indel ou heterogeneidade de cópias, além da presença de variabilidade intragenômica, que pode afetar estimativas de diversidade (AVIS; DICKIE; MUELLER, 2006; KISS, 2012; LINDNER *et al.*, 2013). Dessa forma, regiões gênicas mais conservadas, codificadoras de proteínas, também devem ser consideradas (GLASS *et al.*, 2013).

A RNA polimerase II é uma enzima encontrada em células eucarióticas, que catalisa a transcrição de DNA para síntese de precursores de RNAm, RNAsn e RNAmicro. É uma enzima importante, sendo a mais estudada dentre as RNA polimerases. É composta de dez a doze subunidades proteicas (RPB1-RPB12), com genes codificadores espalhados por todo o genoma (KORNBERG, 1999; SIMS; MANDAL; REINBERG, 2004; YOUNG, 1991). O gene que codifica a segunda maior subunidade proteica da RNA polimerase II (RPB2) é considerado um marcador alternativo adequado para estudos filogenéticos de fungos que apresentam níveis taxonômicos mais elevados. É um gene bastante conservado, apresenta cópia única em fungos, fragmentos de tamanho grande, sequências de nucleotídeos facilmente alinháveis e taxa de evolução conveniente para estudos filogenéticos mais aprofundados (MATHENY, 2005; VĚTROVSKÝ *et al.*, 2016).

A região RPB2 foi incluída em estudos filogenéticos do gênero *Rhizoctonia* em trabalhos que realizaram análises multilocus para identificação do patógeno, gerando sequências RPB2 depositadas no GenBank (CHAVARRO-MESA *et al.*, 2020; GÓNZALEZ *et al.*, 20016; NAKATANI, 2006; RENTERÍA-MARTÍNEZ *et al.*, 2018). O uso dessa região em estudos de diversidade, por sua vez, é dificultado, pois não há sequências de isolados padrões suficientes nos bancos de dados para comparação, como ocorre com a região ITS-rDNA, apresentando dessa forma, uso limitado (VĚTROVSKÝ et al., 2016).

O conhecimento dos AGs e ISGs de *Rhizoctonia* é de suma importância para a compreensão da diversidade ecológica do patógeno, estudos epidemiológicos e suas possíveis implicações no manejo da doença nas diferentes culturas (AGARWAL, 2010; GODOY-LUTZ *et al.*, 2008; SHARMA-POUDYAL *et al.*, 2015). Os diferentes AGs de *Rhizoctonia* podem responder de maneiras diferentes às medidas de controle, uma vez que uma medida pode ser mais eficiente para determinado grupo. Sendo assim, é extremamente importante uma identificação adequada e precisa dos isolados dentro dos diferentes AGs existentes e, consequentemente, a definição de estratégias de manejo (CAMPION et al., 2003; ÖZER; BAYRAKTAR, 2015; PATIL; SOLANKI, 2016).

Diante disso, os objetivos desta tese foram: (i) identificar grupos de anastomose de *Rhizoctonia* associados a espécies de brássicas e tomate em diferentes regiões do Brasil; (ii) caracterizar os isolados em termos de patogenicidade e agressividade; (iii) avaliar a utilidade do gene RPB2 para filogenia e identificação de grupos de anastomose de *Rhizoctonia*; (iv) gerar um banco de sequências RPB2 de *Rhizocotonia solani* e *Rhizoctonia* binucleada. Estas informações serão importantes para a definição de estratégias de manejo da rizoctoniose em hortaliças, bem como para futuras identificações de grupos de anastomose.

REFERÊNCIAS BIBLIOGRÁFICAS

AGARWAL, D. K. *Rhizoctonia* D. C.: taxonomy, ecology and management. In: MUKERJI, K. G.; MANOHARACHARY, C. (Eds.). **Taxonomy and ecology of Indian fungi**. New Delhi: I. K. International Publishing House, 2010. p. 19-49.

AGRIANUAL 2020: **Anuário da gricultura brasileira**. 25. ed. São Paulo: FNP Consultoria & Agroinformativos, 2020. 416 p.

AGRIOS, G. N. Plant pathology. 5th ed. New York: Academic Press, 2005. 922 p.

AIELLO, D.; GUARNACCIA, V.; FORMICA, P. T.; HYAKUMACHI, M.; POLIZZI, G. Occurrence and characterisation of *Rhizoctonia* species causing diseases of ornamental plants in Italy. **European Journal of Plant Pathology**, Dordrecht, v. 148, n. 4, p. 967-982, 2017.

ALVARENGA, M. A. R. **Tomate:** produção em campo, em casa-de-vegetação e em hidroponia. 2 ed. Lavras: Ed. UFLA, 2013. 455 p.

AVIS, P.G.; DICKIE, I. A.; MUELLER, G. M. A 'dirty'business: testing the limitations of terminal restriction fragment length polymorphism (TRFLP) analysis of soil fungi. **Molecular Ecology**, Oxford, v. 15, n. 3, p. 873-882, 2006.

BARTZ, F. E.; CUBETA, M. A.; TODA, T.; NAITO, S.; IVORS, K. L. An in planta method for assessing the role of basidiospores in *Rhizoctonia* foliar disease of tomato. **Plant Disease**, S. Paul, v. 94, n. 5, p. 515-520, 2010.

BOARI, A. de J.; ISHIDA, A. K. N.; de SOUZA, M. B. **Doenças nas hortaliças cultivadas em Altamira, PA e região.** Brasília: Embrapa, 2017. 57 p. (Embrapa Amazônia Oriental-Fôlder/Folheto/Cartilha INFOTECA-E).

BOLKAN, H. A.; RIBEIRO, W. R. C. Anastomosis groups and pathogenicity of *Rhizoctonia solani* isolates from Brazil. **Plant Disease**, St. Paul, v. 69, n. 7, p. 599-601, 1985.

BOYSEN, M.; BORJA, M.; DEL MORAL, C.; SALAZAR, O.; RUBIO, V. Identification at strain level of *Rhizoctonia solani* AG4 isolates by direct sequence of asymmetric PCR products of the ITS regions. **Current Genetics**, Berlin, v. 29, n. 2, p. 174-181, 1996.

BUDGE, G. E.; SHAW, M. W.; LAMBOURNE, C.; JENNINGS, P.; CLAYBURN, R.; BOONHAM, N.; MCPHERSON, M. Characterization and origin of infection of *Rhizoctonia solani* associated with *Brassica oleracea* crops in the UK. **Plant Pathology**, Oxford, v. 58, n. 6, p. 1059-1070, 2009.

BUEE, M.; REICH, M.; MURAT, C.; MORIN, E.; NILSSON, R. H.; UROZ, S.; MARTIN, F. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. **New Phytologist**, London, v. 184, n. 2, p. 449-456, 2009.

BURPEE, L. L.; SANDERS, P. L.; COLE, J. R. H.; SHERWOOD, R. T. Anastomosis groups among isolates of *Ceratobasidium cornigerum* and related fungi. **Mycologia**, Lancaster, v. 72, n. 4, p. 689-701, 1980.

CAMARGO FILHO, W. P.; CAMARGO, F. P. A quick review of the production and commercialization of the main vegetables in Brazil and the world from 1970 to 2015. **Horticultura Brasileira**, Brasília, v. 35, n. 2, p. 160-166, 2017.

CAMARGO FILHO, W. P.; DONADELLI, A.; SUEYOSHI, M. D. L. S.; CAMARGO, A. M. M. P. Evolução da produção de tomate no brasil. **Agricultura em São Paulo**, São Paulo, v. 41, p. 41-69, 1994.

CAMPION, C.; CHATOT, C.; PERRATON, B.; ANDRIVON, D. Anastomosis groups, pathogenicity and sensitivity to fungicides of *Rhizoctonia solani* isolates collected on potato crops in France. **European Journal Plant of Pathology**, Dordrecht, v. 109, n. 9, p. 983-992, 2003.

CAPUCHO, A. S.; BARROSO, K. A.; FREITAS, H. R. Levantamento de doenças foliares em hortas urbanas de Petrolina-PE. **EXTRAMUROS-Revista de Extensão da Univasf**, Petrolina, v. 5, n. 2, p. 164-181, 2017.

CARLING, D. E. Grouping in *Rhizoctonia solani* by hyphal anastomosis reaction. In: SNEH, B.; JABAJI-HARE, S.; NEATE, S.; DIJST, G. (Eds.). *Rhizoctonia species*: taxonomy, molecular biology, ecology, pathology and disease control. Dordrecht: Kluwer, 1996. p. 37-47.

CARLING, D. E.; KUNINAGA, S.; BRAINARD, K. A. Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of *Rhizoctonia solani* anastomosis group-2 (AG-2) and AG-BI. **Phytopathology**, St. Paul, v. 92, n. 1, p. 43-50, 2002.

CARLING, D. E. Anastomosis groups and subsets of anastomosis groups of *Rhizoctonia solani*. In: INTERNATIONAL SYMPOSIUM ON *RHIZOCTONIA*, 3., 2000. Abstracts ... Taichung: International Symposium on Rhizoctonia, 2000. 14 p.

CARVALHO, P. G.; MACHADO, C. M. M.; MORETTI, C. L.; FONSECA, M. E. D. N. Hortaliças como alimentos funcionais. **Horticultura Brasileira**, Brasília, v. 24, n. 4, p. 397-404, 2006.

CERESINI, P. C. *Rhizoctonia* como fitopatógeno: biologia e diversidade de *Rhizoctonia solani* em agroecossistemas tropicais e perspectivas do manejo da rizoctoniose usando resistência de plantas. In: FREITAS, A. S.; DORNELAS, G. A.; SILVA, J. C. P.; SALUM, L. A. (Eds.). **Sanidade de raízes**. São Carlos: Suprema, 2014. p. 177-190.

CHAVARRO-MESA, E.; CERESINI, P.; PEREIRA, D.; VICENTINI, S.; SILVA, T.; RAMOS-MOLINA, L.; NEGRISOLI, M.; SCHURT, D.; VIEIRA JÚNIOR, J. R. A broad diversity survey of *Rhizoctonia* species from the Brazilian Amazon reveals the prevalence of *R. solani* AG-1 IA on signal grass and the new record of AG-1 IF on cowpea and soybeans. **Plant Pathology**, Oxford, v. 69, n. 3, p. 455-466, 2020.

DONG, W.; LI, Y.; DUAN, C.; LI, X.; NAITO, S.; CONNER, R. L.; YANG, G.; LI, C. Identification of AG-V, a new anastomosis group of binucleate *Rhizoctonia* spp. from taro and ginger in Yunnan province. **European Journal of Plant Pathology**, Dordrecht, v. 148, n. 4, p. 895-906, 2017.

DUSI, A. P.; LOPES, C. A.; OLIVEIRA, C. A. S.; MOREIRA, H. M.; de MIRANDA, J. E. C.; CHARCHAR, J. M.; SILVA, J. L. O.; MAGALHÃES, J. R.; BRANCO, M. C.; REIS, N. V. B.; MAKISHIMA, N.; FONTES, R. R.; PEREIRA, W.; HORINO, Y. A cultura do tomateiro (para mesa). Brasília: Embrapa - CNPH, 1993. 92 p.

ELDER JR, J. F.; TURNER, B. J. Concerted evolution of repetitive DNA sequences in eukaryotes. **The Quarterly Review of Biology**, Chicago, v. 70, n. 3, p. 297-320, 1995.

FAO - Food and Agriculture Organization. **Faostat**. Disponível em: http://www.fao.org/faostat/en/#data/QC. Acesso em: 10 jun. 2020.

FARR, D. F.; ROSSMAN, A. Y. **Fungal databases**. Beltsville: National Fungus Collections, ARS, USDA. Disponível em: https://nt.ars-grin.gov/fungaldatabases/>. Acesso em: 15 jun. 2020.

FERREIRA, W. R.; RANAL, M. A.; FILGUEIRA, F. A. R. Fertilizantes e espaçamento entre plantas na produtividade da couve-da-Malásia. **Horticultura Brasileira**, Brasília, v. 20, n. 4, p. 635-640, 2002.

FILGUEIRA, F. A. R. Novo manual de olericultura. 3. ed. Viçosa: UFV, 2008. 421 p.

FILGUEIRA, F. A. R. **Novo manual de olericultura:** agrotecnologia moderna na produção e comercialização de hortaliças. 2. ed. Viçosa: UFV, 2003. 412 p.

GAINO, A. P. S. C.; BASSETO, M. A.; GASPAROTTO, L.; POLTRONIERI, L. S.; CERESINI, P. C. Inferência filogenética revela a complexa etiologia das manchas areolada e foliar em seringueira e em outras espécies cultivadas na Amazônia. **Acta Scientiarum**. **Agronomy**, Maringá, v. 32, n. 3, p. 385-395, 2010.

GLASS, D. J.; TAKEBAYASHI, N.; OLSON, L. E.; TAYLOR, D. L. Evaluation of the authenticity of a highly novel environmental sequence from boreal forest soil using ribosomal RNA secondary structure modeling. **Molecular Phylogenetics and Evolution**, San Diego, v. 67, n. 1, p. 234-245, 2013.

GODOY-LUTZ, G.; KUNINAGA, S.; STEADMAN, J. R.; POWERS, K. Phylogenetic analysis of *Rhizoctonia solani* subgroups associated with web blight symptoms on common bean based on ITS-5.8S rDNA. Journal of General Plant Pathology, Tokyo, v. 74, n. 1, p. 32-40, 2008.

GONDAL, A. S.; RAUF, A.; NAZ, F. Anastomosis Groups of *Rhizoctonia solani* associated with tomato foot rot in Potohar Region of Pakistan. **Scientific Reports**, London, v. 9, n. 1, p. 1-12, 2019a.

GONDAL, A. S.; RAUF, A.; NAZ, F. The first report of tomato foot rot caused by *Rhizoctonia solani* AG-3 PT from Pakistan. **Journal of Plant Pathology**, Pisa, v. 101, n. 2, p. 425-425, 2019b.

GÓNZALEZ, D.; RODRIGUEZ-CARRES, M.; BOEKHOUT, T.; STALPERS, J.; KURAMAE, E. E.; NAKATANI, A. K.; VILGALYS, R.; CUBETA, M. A. Phylogenetic relationships of *Rhizoctonia* fungi within the Cantharellales. **Fungal Biology**, Oxford, v. 120, n. 4, p. 603-619, 2016. GONZÁLEZ-GARCÍA, V. G.; ONCO, M. A. P.; SUSAN, V. B. Biology and systematics of the form genus *Rhizoctonia*. **Spanish Journal of Agricultural Research**, Madrid, v. 4, p. 55-79, 2006.

GOULD, W. A. **Tomato production, processing & technology**. 3. ed. Baltimore: CTI Publications Inc., 1992. 500 p.

HIETALA, A, M.; SEN, R.; LILJA, A. Anamorphic and teleomorphic characteristics of a uninucleate *Rhizoctonia* sp. isolated from the roots of nursery grown conifer seedlings. **Mycological Research**, Cambridge, v. 98, n. 9, p. 1044-1050, 1994.

HUA, G. K. H.; BERTIER, L.; SOLTANINEJAD, S.; HÖFTE, M. Cropping systems and cultural practices determine the *Rhizoctonia* anastomosis groups associated with *Brassica* spp. in Vietnam. **PloS One**, San Francisco, v. 9, n. 11, p. 1-15, 2014.

IBGE (Instituto Brasileiro de Geografia e Estatística). **SIDRA - Sistema IBGE de recuperação automática [online].** Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2020. Disponível em: https://sidra.ibge.gov.br/tabela/6953#resultado. Acesso em: 01 jun. 2020.

INOKUTI, E. M.; REIS, A.; CERESINI, P. C.; CÂMARA, M. P.; MICHEREFF, S. J. Diversity and pathogenicity of anastomosis groups of *Rhizoctonia* associated with potato stem canker and black scurf diseases in Brazil. **European Journal of Plant Pathology**, Dordrecht, v. 153, n. 4, p. 1333-1339, 2018.

IRELAND, K. B.; WEIR, B. S.; PHANTAVONG, S.; PHITSANOUKANE, P.; VONGVICHID, K.; VILAVONG, S.; TESORIERO, L. A.; BURGESS, L. W. First report of *Rhizoctonia solani* anastomosis group AG-4 HG-I in the Lao PDR. **Australasian Plant Disease Notes**, Collingwood, v. 10, n. 1, p. 1, 2014.

JEONG, S. G.; LEE, J. Y.; YOON, S. R.; MOON, E. W.; HA, J. H. A quantitative PCR based method using propidium monoazide for specific and sensitive detection of *Pectobacterium carotovorum* ssp. *carotovorum* in kimchi cabbage (*Brassica rapa* L. subsp. *pekinensis*). LWT - Food Science and Technology, London, v. 113, p. 108327, 2019.

JIANG, J. H.; TAM, S. L.; TODA, T.; CHEN, L. C. Controlling *Rhizoctonia* damping-off of Chinese mustard by using endomycorrhizal *Rhizoctonia* spp. isolated from orchid mycorrhizae. **Plant Disease**, St. Paul, v. 100, n. 1, p. 85-91, 2016.

KIM, S. G.; HUR, O. S.; RO, N. Y.; KO, H. C.; RHEE, J. H.; SUNG, J. S.; RYU, K. Y.; LEE, S. Y.; BAEK, H. J. Evaluation of resistance to *Ralstonia solanacearum* in tomato genetic resources at seedling stage. **The Plant Pathology Journal**, Suwon, v.32, n. 1, p.58, 2016.

KIRK P. M.; CANNON P. F.; DAVID, J. C.; STALPERS, J. A. Ainsworth and Bisby's dictionary of the fungi. 9. ed. Wallingford: International Mycological Institute, CAB International, 2001. 655 p.

KISS, L. Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. **Proceedings of the National Academy of Sciences**, Allahabad, v. 109, n. 27, p. E1811-E1811, 2012.

KORNBERG, R. D. Eukaryotic transcriptional control. **Trends in Biochemical Sciences**, Amsterdam, v. 24, n. 12, p. M46-M49, 1999.

KUCHAREK, T. *Rhizoctonia* diseases in aboveground plant parts of agronomic and vegetable crops. Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, 1990. 41 p.

KUNIEDA-ALONSO, S.; ALFENAS, A. C.; MAFFIA, L. A. Sobrevivência de micélio e escleródios de *Rhizoctonia solani* tratados com *Trichoderma* spp., em restos de cultura de *Eucalyptus* sp. **Fitopatologia Brasileira**, Brasília, v. 30, n. 2, p. 164-168, 2005.

KUNINAGA, S. Current situation of the taxonomy of the genus *Rhizoctonia* and the *Rhizoctonia* species complex. **Japan Journal of Phytopathology**, Tokyo, v. 68, n. 1, p. 3-20, 2002.

KUNINAGA, S.; NATSUAKI, T.; TAKEUCHI, T.; YOKOSAWA, R. Sequence variation of the rDNA ITS regions within and between anastomosis groups in *Rhizoctonia solani*. **Current Genetics**, New York, v. 32, n. 3, p. 237–243, 1997.

KURAMAE, E. E.; BUZETO, A. L.; CIAMPI, M. B.; SOUZA, N. L. Identification of *Rhizoctonia solani* AG 1-IB in lettuce, AG 4 HG-I in tomato and melon, and AG 4 HG-III in broccoli and spinach, in Brazil. **European Journal of Plant Pathology**, Dordrecht, v. 109, n. 4, p. 391-395, 2003.

KURAMAE, E. E.; BUZETO, A. L.; NAKATANI, A. K.; SOUZA, N. L. rDNA-based characterization of a new binucleate *Rhizoctonia* spp. causing root rot on kale in Brazil. **European Journal of Plant Pathology**, Dordrecht, v. 119, n. 4, p. 469-475, 2007.

LEINER, R. H.; CARLING, D. E. Characterization of *Waitea circinata (Rhizoctonia)* isolated from agricultural soils in Alaska. **Plant Disease**, St. Paul, v. 78, n. 4, p. 385-388, 1994.

LI, Y. Q.; LEI, L. P.; DONG, W. H.; WANG, S. M.; NAITO, S. YANG, G. H. Molecular diversity of binucleate *Rhizoctonia* AG-A in China. **Phytoparasitica**, Bet Dagan, v. 39, n. 5, p. 461, 2011.

LINDNER, D. L.; CARLSEN, T.; HENRIK NILSSON, R.; DAVEY, M.; SCHUMACHER, T.; KAUSERUD, H. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi. **Ecology and Evolution**, Oxford, v. 3, n. 6, p. 1751-1764, 2013.

LOPES, C. A.; ÁVILA, A. C. **Doenças do tomateiro**. Brasilia: Embrapa Hortaliças, 2005. 151 p.

MATHENY, P. B. Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). **Molecular Phylogenetics and Evolution**, San Diego, v. 35, n. 1, p. 1-20, 2005.

MAY, A.; TIVELLI, S.W.; VARGAS, P. F.; SAMRA, A.G.; SACCONI, L. V.; PINHEIRO, M.Q. **A cultura da couve-flor**. Campinas: Instituto Agronômico-IAC, 2007. 36 p.

MELLO, M. R. F.; SILVEIRA, E. B.; VIANA, I. O.; GUERRA, M. L.; MARIANO, R. L. R. Uso de antibióticos e leveduras para controle da podridão-mole em couve-chinesa. **Horticultura Brasileira**, Brasília, v. 29, n.1, p. 78-83, 2011.

MELO, R. A. C.; SCHIAVON, A.; BLIND, A. D.; ECKSTEIN, B.; PINHEIRO, J. B.; VENDRAME, L. P. C.; HANASHIRO, M. M.; JORGE, M, H. M.; VIDAL, M. C.; MICHEREFF FILHO, M. BOTREL, N.; MADEIRA, N. R. A cultura dos brócolis. Brasília: Embrapa Hortaliças, 2015. 153 p.

MELO, R. A. C.; MADEIRA, N. R.; LIMA, C. E. P. **Produção de brássicas em sistema plantio direto**. Brasília: Embrapa Hortaliças, 2016. 16 p.

MELO, R. A. C.; VENDRAME, L. P. C.; MADEIRA, N. R.; BLIND, A. D.; VILELA, N. J. Caracterização e diagnóstico de cadeia produtiva de brássicas nas principais regiões produtoras brasileiras. Brasília: Embrapa Hortaliças, 2017. 104 p.

MELO, R. A. C.; VENDRAME, L. P. C.; MADEIRA, N.R.; BLIND, A. D.; VILELA, N. J. Characterization of the Brazilian vegetable brassicas production chain. Horticultura Brasileira, Brasília, v. 37, p. 366-372, 2019.

MISAWA, T.; AOKI, M. First report of *Rhizoctonia solani* AG-1 IC causing head rot of cabbage in Japan. **New Disease Reports**, York, v. 36, p. 12, 2017.

MISAWA, T.; KUNINAGA, S. The first report of tomato foot rot caused by *Rhizoctonia solani* AG-3 PT and AG-2-Nt and its host range and molecular characterization. **Journal of General Plant Pathology**, Tokyo, v. 76, n. 5, p. 310-319, 2010.

MISAWA, T.; KUROSE, D. Anastomosis group and subgroup identification of *Rhizoctonia solani* strains deposited in NARO Genebank, Japan. Journal of General Plant Pathology, Tokyo, v. 85, n. 4, p. 282-294, 2019.

MISAWA, T.; KUROSE, D.; MORI, M.; TODA, T. Characterization of japanese *Rhizoctonia solani* AG-2-1 isolates using rDNA-ITS sequences, culture morphology, and growth temperature. **Journal of General Plant Pathology**, Tokyo, v. 84, n. 6, p. 387-394, 2018.

MISAWA, T.; MASAHARU, K.; SASAKI, J.; KUNINAGA, S. First report of broccoli foot rot caused by *Rhizoctonia solani* AG-2-2 IV and pathogenicity comparison of the pathogen with related pathogens. **Journal of General Plant Pathology**, Tokyo, v. 81, n. 1, p. 15-23, 2015.

MOREIRA, H. J. C.; BRAGANÇA, H. B. N. S. **Manual de identificação de plantas infestantes**. Campinas: FMC Agricultural Products, 2011. 1017 p.

NAIKA, S.; JEUDE, J. V. L. de.; GOFFAU, M. de.; HILMI, M.; DAM, B. V. A cultura do tomate: produção, processamento e comercialização. Wageningen: Agrodok 17. Fundação Agromisa e CTA, 2006. 104 p.

NAKATANI, A. K. **Diversidade genética de** *Rhizoctonia* **spp. e análise de sequências multilocos**. 2006. 98 f. Tese (Doutorado) - Universidade Estadual Paulista "Júlio De Mesquita Filho", Botucatu.

NAZERIAN, E.; SIJAM, K.; MIOR AHMAD, Z. A.; VADAMALAI, G. First report of cabbage soft rot caused by *Pectobacterium carotovorum* subsp. *carotovorum* in Malaysia. **Plant Disease**, Saint Paul, v. 95, n. 4, p. 491, 2011.

OGOSHI, A. Ecology and pathogenicity of anastomosis and intraspecific groups of *Rhizoctonia solani* Kuhn. **Annual Review of Phytopathology**, Palo Alto, v. 25, n. 1, p. 125-143, 1987.

OGOSHI, A. Introduction - the genus *Rhizoctonia*. In: SNEH, B.; JABAJI-HARE, S.; NEATE, S.; DIJST, G. (Eds.). *Rhizoctonia* species: taxonomy, molecular biology, ecology, pathology and disease control. Dordrecht: Kluwer, 1996. p. 1-9.

OHKURA, M.; ABAWI, G. S.; SMART, C. D.; HODGE, K. T. Diversity and aggressiveness of *Rhizoctonia solani* and *Rhizoctonia*-like fungi on vegetables in New York. **Plant Disease**, Saint Paul, v. 93, n. 6, p. 615-624, 2009.

ÖZER, G.; BAYRAKTAR, H. Characterization and sensitivity to fungicides of *Rhizoctonia* spp. recovered from potato plants in Bolu, Turkey. **Journal of Phytopathology**, Berlin, v. 163, n. 1, p. 11-18, 2015.

PANNECOUCQUE, J.; VAN BENEDEN, S.; HÖFTE, M. Characterization and pathogenicity of *Rhizoctonia* isolates associated with cauliflower in Belgium. **Plant Pathology**, Oxford, v. 57, n. 4, p. 737-746, 2008.

PATIL, H. J.; SOLANKI, M. K. Molecular prospecting: advancement in diagnosis and control of *Rhizoctonia solani* diseases in plants. In: KUMAR, P.; GUPTA, V. K.; TIWARI, A. J.; KAMLE, M (Eds.). **Current trends in plant disease diagnostics and management practices**. Berna: Springer International, 2016. p. 165-185.

PLANAS-MARQUÈS, M.; KRESSIN, J. P.; KASHYAP, A.; PANTHEE, D. R.; LOUWS, F. J.; COLL, N. S.; VALLS, M. Four bottlenecks restrict colonization and invasion by the pathogen *Ralstonia solanacearum* in resistant tomato. **Journal of Experimental Botany**, Oxford, v. 71, n. 6, p. 2157-2171, 2020.

POURMAHDI, A.; TAHERI, P. Genetic Diversity of *Thanatephorus cucumeris* infecting tomato in Iran. Journal of Phytopathology, Berlin, v. 163, n. 1, p. 19-32, 2015.

PUIATTI, M. A arte de cultivar hortaliças. Viçosa: UFV, CEAD, 2019. 183 p.

QUEIROZ DAVID, G.; CHAVARRO-MESA, E.; SCHURT, D. A.; CERESINI, P. C. *Rhizoctonia* como fitopatógeno no agroecossistema brasileiro. In: LOPES, U. P.; MICHEREFF, S. J. (Eds.). **Desafios do manejo de doenças radiculares causadas por fungos**. Recife: EDUFRPE, 2018. p.35-55.

REN, J.; PETZOLDT, R.; DICKSON, M. H. Screening and identification of resistance to bacterial soft rot in *Brassica rapa*. **Euphytica**, Dordrecht, v. 118, n. 3, p. 271-280, 2001.

RENTERÍA-MARTÍNEZ, M. E.; GUERRA-CAMACHO, M. A.; OCHOA-MEZA, A.; MORENO-SALAZAR, S. F.; VARELA-ROMERO, A.; GUTIÉRREZ-MILLÁN, L. E.; MEZA-MOLLER, A. D. C. Multilocus phylogenetic analysis of fungal complex associated with root rot watermelon in Sonora, Mexico. **Mexican Journal of Phytopathology**, Chapingo, v. 36, n. 2, p. 233-255, 2018.

ROBERTS, P. *Rhizoctonia*-forming fungi: a taxonomic guide. United Kingdom: Royal Botanical Gardens, Kew, 1999. 239 p.

ROSA, C. L. S.; SOARES, A. G.; FREITAS, D. F. G. C.; ROCHA, M. C.; FERREIRA, J. C. S.; GODOY, R. L. O. Caracterização físico-química, nutricional e instrumental de quatro acessos de tomate italiano (*Lycopersicum esculentum* Mill) do tipo 'Heirloom' produzido sob manejo orgânico para elaboração de polpa concentrada. **Alimentos e Nutrição**, Araraquara, v. 22, n. 4, p. 649-656, 2011.

ROLLINS, P. A.; KEINATH, A. P.; FARNHAM, M. W. Effect of inoculum type and anastomosis group of *Rhizoctonia solani* causing wirestem of cabbage seedlings in a controlled environment. **Canadian Journal of Plant Pathology**, Ontario, v. 21, n. 2, p. 119-124, 1999.

SASAKI, D.; HAGA, H.; MATSUDA, K.; MISAWA, T. Damping-off of kale caused by *Rhizoctonia solani* AG-4 HG-I. **Japanese Journal of Phytopathology**, Tokyo, v. 84, n. 3, p. 158-160, 2018.

SCHOCH, C. L.; SEIFERT, K. A.; HUHNDORF, S.; ROBERT, V.; SPOUGE, J. L.; LEVESQUE, C. A.; CHEN, W.; CONSORTION, F. B. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. **Proceedings of the National Academy of Sciences**, Allahabad, v. 109, n. 16, p. 6241-6246, 2012.

SHAFIQUE, H. A.; SULTANA, V.; EHTESHAMUL-HAQUE, S.; ATHAR, M. Management of soil-borne diseases of organic vegetables. Journal of Plant Protection **Research**, Poznán, v. 56, n. 3, p. 221-230, 2016.

SHARMA-POUDYAL, D.; PAULITZ, T. C.; PORTER, L. D.; DU TOIT, L. J. Characterization and pathogenicity of *Rhizoctonia* and *Rhizoctonia*-like spp. from pea crops in the Columbia Basin of Oregon and Washington. **Plant Disease**, St. Paul, v. 99, n. 5, p. 604-613, 2015.

SHARON, M.; FREEMAN, S.; KUNINAGA, S.; SNEH, B. Genetic diversity, anastomosis groups and virulence of *Rhizoctonia* spp. from strawberry. **European Journal of Plant Pathology**, Dordrecht, v. 117, n. 3, p. 247-265, 2007.

SHARON, M.; KUNINAGA, S.; HYAKUMACHI, M.; NAITO, S.; SNEH, B. Classification of *Rhizoctonia* spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. **Mycoscience**, Tokyo, v. 49, n. 1, p. 93-114, 2008.

SHARON, M.; KUNINAGA, S.; HYAKUMACHI, M.; SNEH, B. The advancing identification and classification of *Rhizoctonia* spp. using molecular and biotechnological methods compared with the classical anastomosis grouping. **Mycoscience**, Tokyo, v. 47, n. 6, p. 299-316, 2006.

SHIM, C. K.; KIM, M. J.; KIM, Y. K.; JEE, H. J.; HONG, S. J.; PARK, J. H.; EUN-JANG, H.; YUN, J. C. Leaf rot and leaf ring spot caused by *Rhizoctonia solani* in chinese cabbage. **Research in Plant Disease**, Suwon, v. 19, n. 4, p. 300-307, 2013.

SILVA, J. B. C.; GIORDANO, L. B.; FURUMOTO, O.; BOITEUX, L. S.; FRANÇA, F. H; VILLAS BÔAS, G. L.; BRANCO, M. C.; MEDEIROS, M. A.; MAROUELLI, W.; SILVA, W. L. C.; LOPES, C. A.; ÁVILA, A. C.; NASCIMENTO, W. M.; PEREIRA, W. Cultivo de tomate para industrialização. Sistemas de produção, Embrapa Hortaliças. Versão eletrônica, 2003. Disponível em:

https://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Tomate/TomateIndustrial/index. htm. Acesso em: 10 jun. 2020.

SIMS, R. J.; MANDAL, S. S.; REINBERG, D. Recent highlights of RNA-polymerase-IImediated transcription. **Current Opinion in Cell Biology**, Philadelphia, v. 16, n. 3, p. 263-271, 2004.

SNEH, B.; BURPEE, L.; OGOSHI, A. **Identification of** *Rhizoctonia* species. St. Paul: APS Press, 1991. 133 p.

STALPERS, J. A.; ANDERSEN, T. F. A synopsis of the taxonomy of teleomorphs connected with Rhizoctonia sl. In: SNEH, B.; JABAJI-HARE, S.; NEATE, S. M.; DIJST, G. (Eds.). *Rhizoctonia* species: Taxonomy, molecular biology, ecology, pathology and disease control. Dordrecht: Kluwer Academic Publishers ,1996. p. 49-63.

TAKEUCHI, J.; HORIE, H. Ocorrência de uma nova doença causada por *Rhizoctonia solani*, murcha de rúcula e podridão foliar de orégano. **Boletim de Pesquisa sobre Doenças e Pragas de Kanto Higashiyama**, Kyoto, n. 53, p. 65-67, 2006.

TRANI, P. E.; TIVELLI, S. W.; BLAT, S. F.; PRELA-PANTANO, A.; TEIXEIRA, E. P.; ARAÚJO, H. S.; FELTRAN, J. C.; PASSOS, F. A.; FIGUEIREDO, G. J.B.; NOVO, M. C. S. S. **Couve de folha:** do plantio à pós colheita. Campinas: Instituto Agronômico, 2015. 36 p.

TÜRKKAN, M.; KILIÇOĞLU, M. Ç.; ERPER, I. Characterization and pathogenicity of *Rhizoctonia* isolates collected from *Brassica oleracea* var. *acephala* in Ordu, Turkey. **Phytoparasitica**, Bet Dagan, v. 48, p. 273-286, 2020.

VERMA, P. R. Oilseed rape and canola diseases incited by *Rhizoctonia* species. In: SNEH, B.; JABAJI-HARE, S.; NEATE, S.; DIJST, G. (Eds.) *Rhizoctonia* species: Taxonomy, molecular biology, ecology, pathology and disease control. Dordrecht: Springer, 1996. p. 249-258.

VĚTROVSKÝ, T.; KOLAŘÍK, M.; ŽIFČÁKOVÁ, L.; ZELENKA, T.; BALDRIAN, P. The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. **Molecular Ecology Resources**, Oxford, v. 16, n. 2, p. 388-401, 2016.

WARWICK, S.I. Brassicaceae in Agriculture. In: SCHMIDT, R.; BANCROFT, I. (Eds.). Genetics and Genomics of the Brassicaceae. New York: Springer New York, 2011. p.33-65.

WELLER, D. M.; RAAIJMAKERS, J. M.; GARDENER, B. B. M.; THOMASHOW, L. S. Microbial populations responsible for specific soil suppressiveness to plant pathogens. **Annual Review of Phytopathology**, Palo Alto, v. 40, n. 1, p. 309-348, 2002.

YANG, G. H.; CHEN, H. R.; NAITO, S.; WU, J. Y.; HE, X. H.; DUAN, C. F. Occurrence of foliar rot of pak choy and chinese mustard caused by *Rhizoctonia solani* AG1-IB in China. **Journal of General Plant Pathology**, Tokyo, v. 71, n. 5, p. 377-379, 2005.

YANG, G. H.; CHEN, J. Y.; PU, W. Q. First report of head rot of cabbage and web-blight of snap bean caused by *Rhizoctonia solani* AG 4 HG-I. **New Disease Reports**, York, v. 14, p. 20-20, 2007.

YANG, G.; LI, C. General description of *Rhizoctonia* species complex. In: CUMAGUN, C. J. R. (Ed.). **Plant Pathology**, Rijeka: Intech, 2012. p. 41-52.

YANG, J.; KARBANDA, P. D.; WANG, H.; MCANDREW, D. W. Characterization, virulence, and genetic variation of *Rhizoctonia solani* AG-9 in Alberta. **Plant Disease**, St. Paul, v. 80, p. 513-518, 1996.

YANG, S.; MIN, F.; WANG, W.; WEI, Q.; GUO, M.; GAO, Y.; DONG, X.; LU, D. Anastomosis group and pathogenicity of *Rhizoctonia solani* associated with stem canker and black scurf of potato in Heilongjiang Province of China. **American Journal of Potato Research**, Orono, v. 94, n. 2, p. 95-104, 2017.

YANG, Y. G.; ZHAO, C.; GUO, Z. J.; WU, X. H. Characterization of a new anastomosis group (AG-W) of binucleate *Rhizoctonia*, causal agent for potato stem canker. **Plant Disease**, St. Paul, v. 99, n. 12, p. 1757-1763, 2015.

YILDIZ, A.; DÖKEN, M. T. Anastomosis group determination of *Rhizoctonia solani* Kühn (telemorph: *Thanatephorus cucumeris*) isolates from tomatoes grown in Aydin, Turkey and their disease reaction on various tomato cultivars. **Journal of Phytopathology**, Berlin, v. 150, n. 10, p. 526-528, 2002.

YOUNG, R. A. Rna polymerase II. **Annual Review of Biochemistry**, Palo Alto, v. 60, n. 1, p. 689-715, 1991.

YOUSSEF, M. M. A.; LASHEIN, A. M. S. Effect of cabbage (*Brassica oleracea*) leaf residue as a biofumigant, on root knot nematode, *Meloidogyne incognita* infecting tomato. Journal of Plant Protection Research, Poznań, v. 53. n. 3, p. 271-274, 2013.

ZACZEK-MOCZYDŁOWSKA, M. A.; FLEMING, C. C.; YOUNG, G. K.; CAMPBELL, K.; O'HANLON, R. *Pectobacterium* and *Dickeya* species detected in vegetables in Northern Ireland. **European Journal of Plant Pathology**, Dordrecht, v. 154, n. 3, p. 635-647, 2019.

ZÁRATE, N. A. H.; VIEIRA, M. C.; VIEIRA, D. A. H. Produção de hortaliças. In: ZÁRATE, N. A. H; VIEIRA, M. C. (Eds.). **Hortas:** conhecimentos básicos. Dourados: Seriema, 2018. p. 33-48.

ZHANG, L.; ZHENG, L.; HSIANG, T.; LV, R.; HUANG, J. An outbreak of head rot of cabbage caused by *Rhizoctonia solani* AG2-1 in Central China. **Plant Disease**, St. Paul, v. 93, n. 1, p. 109, 2009.

ZHAO, C.; LI, Y.; WU, S.; WANG, P.; HAN, C.; WU, X. Anastomosis group and pathogenicity of *Rhizoctonia* spp. associated with seedling damping-off of sugar beet in China. **European Journal of Plant Pathology**, Dordrecht, v. 153, n. 3, p. 869-878, 2019.

CAPÍTULO II

Diversity of *Rhizoctonia* anastomosis groups associated with vegetable brassicas and tomato in Brazil

Submissão: European Journal of Plant Pathology Short Communication Dordrech, Holanda JCR = 1,582

1	Diversity of Rhizoctonia anastomosis groups associated with vegetable brassicas and
2	tomato in Brazil
3	
4	Graziele S. Lima • Kledson M. Santos • Ana P. O. Barros • Ailton Reis • Alexandre R.
5	Machado • Cristina M. Souza-Motta • Kamila C. Correia • Sami J. Michereff
6	
7	G. S. Lima • K. M. Santos • A. P. O. Barros
8	Programa de Pós-Graduação em Fitopatologia, Universidade Federal Rural de Pernambuco,
9	52171-900, Recife, PE, Brazil
10	
11	A. R. Machado • C. M. de Souza-Motta
12	Departamento de Micologia, Universidade Federal de Pernambuco, 50740-600, Recife, PE,
13	Brazil
14	
15	K. C. Correia • S. J. Michereff
16	Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, 63133-610,
17	Crato, CE, Brazil
18	
19	A. Reis
20	Laboratório de Fitopatologia, Embrapa Hortaliças, Brasília, DF, 70359-970, Brazil
21	
22	S. J. Michereff (🖂) e-mail: sami.michereff@ufca.edu.br
23	ORCID http://orcid.org/0000-0002-2156-3502
24	
25	A. R. Machado
26	ORCID https://orcid.org/0000-0001-7440-3097
Abstract One hundred and twelve Rhizoctonia isolates were collected from tomato and 27 vegetable brassicas presenting typical Rhizoctonia symptoms in Brazil. The isolates were 28 identified by phylogenetic analysis of the internal transcribed spacer (ITS) region of ribosomal 29 DNA and tested for pathogenicity and aggressiveness. Ninety-nine isolates were identified as 30 R. solani and 13 isolates as binucleate Rhizoctonia. Six AGs were found in vegetable brassicas 31 (AG-1 IB, AG-2-2-IIIB, AG-4 HGI, AG-A, AG-G and AG-R) and two in tomato (AG-4 HGI 32 and AG-Fa). The most prevalent AG was AG-4-HGI (85.7% of isolates), followed by AG-A 33 (5.4%), AG-F (2.7%), AG-G (1.8%), AG-R (1.8%), AG-1-IB (1.8%) and AG-2-2IIIB (0.9%). 34 The AG-4-HGI was found in all regions of tomato and brassicas collection in Brazil. 35 36 Pathogenicity tests revealed that isolates from all AGs, except AG-A, induced symptoms on 37 detached kale leaves and tomato fruits. This study was the first report of the occurrence of AG-F infecting tomatoes and AG-4-HGI, AG-2-2IIIB, AG-A, AG-G and AG-R infecting brassica 38 plants in Brazil. The knowledge of these anastomosis groups is extremely important for 39 understanding the epidemiology of the disease and forward development of management 40 strategies. 41

42

43 Keywords Bayesian Inference • *Ceratobasidium* sp. • ITS sequences • *Rhizoctonia solani* •
44 Vegetables

45

The vegetables crops have great economic and nutritional importance, indicated by the considerable increasing in cultivation in cropped areas all throughout Brazil (Camargo Filho and Camargo 2017). In Brazil, fresh vegetables had an increase in their production in more than 100.000 tons (FAO 2020). Due the intensive cultivation, the vegetables are frequently attacked by several soilborne pathogens including fungi belonging to the genus *Rhizoctonia* (Driscoll 2020). *Rhizoctonia* spp. infects seeds, roots, leaves, stems and fruits, causing considerable yield and quality losses of vegetables such as tomatoes (*Solanum lycopersicum* L.), broccoli (*Brassica oleracea* L. var. *italica*), cabbage (*Brassica oleracea* L. var. *capitata*), kale (*Brassica oleracea* L. var. *acephala*) and arugula (*Eruca sativa* L.) (Kuramae et al. 2003; Yang et al. 2007; Türkkan et al. 2020). Controlling *Rhizoctonia* diseases is very difficult once the pathogens are soilborne, with a high capacity for saprophytic competition and a wide range of hosts (Agarwal 2010; González et al. 2011; Tenório et al. 2019).

The genus Rhizoctonia is composed of an important multinucleate species complex 59 represented by R. solani (teleomorph: Thanatephorus cucumeris) and by binucleate Rhizoctonia 60 (teleomorph: Ceratobasidium sp.) (Carling 1996; Kuramae et al. 2007; Dong et al. 2017). 61 62 Considering the recognition of hyphae fusion, Rhizoctonia spp. have been categorized into different anastomosis groups (AGs) (Ogoshi 1987; González-García et al. 2006). Until the 63 present date, thirteen groups in R. solani (AG-1 to AG-13) and eighteen groups in binucleate 64 Rhizoctonia (AG-A to AG-W) (González et al. 2016; Dong et al. 2017; Inokuti et al. 2018; 65 Zhao et al. 2019), besides seven American groups (CAG-1 to CAG-7) of binucleate Rhizoctonia 66 have been described (Burpee et al. 1980; Kuramae et al. 2007). 67

For many years, the determination of *Rhizoctonia* AGs was performed only by pairing 68 69 hyphae with test isolates. However, some problems were found throughout the use of this classic methodology, such to difficulties in implementing the pairing, the reproducibility of the 70 reactions, the tediousness of the methodology, the non-availability of the testers to all labs 71 72 especially due to quarantine restrictions (Hyakumachi and Ui 1987; Sneh et al. 1991; Carling 73 1996; Sharon et al. 2006). Thus, molecular approaches, including sequencing of the internal 74 transcribed spacer (ITS) region of ribosomal DNA (rDNA), have been confirmed as reliable 75 tools to differentiate isolates of Rhizoctonia into distinct clades corresponding to different AGs and subgroups (Fang et al. 2013; Gondal et al. 2019a). 76

77 Several AGs of *Rhizoctonia* spp. can cause disease on vegetable brassicas and tomatoes. The AG-1-IA, AG1-IB, AG-2-1, AG-4-HGI and AG-A are the most widely distributed as 78 79 pathogens in different countries causing damping off, root rot, collar rot and leaf rot on brassicas (Yang et al. 2007; Li et al. 2011; Shim et al. 2013; Hua et al. 2014; Ireland 2014; Misawa 2018; 80 Sasaki et al. 2018; Türkkan et al. 2020). On tomatoes, AG-2-1, AG-2-2, AG-3-PT, AG-4-HGI 81 and AG-5 isolates have been reported as important pathogens worldwide (Misawa and 82 Kuninaga 2010; Pourmahdi and Taheri 2015; Gondal et al. 2019b). In Brazil, there are just few 83 studies about Rhizoctonia pathogens associated with vegetable brassicas and tomatoes. Bolkan 84 and Ribeiro (1985) identified two isolates belonging to AG-1 and AG-2 infecting radish and 85 cabbage, respectively; Kuramae et al. (2003) identified AG-4-HGI on tomatoes and AG-4-86 87 HGIII on broccoli; Kuramae et al. (2007) reported four isolates of Ceratobasidium sp. CAG-7 causing kale infection; and Gaino et al. (2010) identified one AG-1-IB isolate on cabbage. 88

The knowledge of *Rhizoctonia* AGs associated with vegetables crops is of relative importance for to determine the etiology of the disease, the ecological distribution of the pathogen and the possible epidemiological implications for developing specific control strategies (Agarwal 2010; Taheri and Tarighi 2012; Patil and Solanki 2016). Therefore, the aim of this study was to identify AGs of *Rhizoctonia* isolates associated with tomato and vegetables brassicas in Brazil and to characterize AGs according to pathogenicity and aggressiveness.

The isolates were obtained by sampling from diseased vegetable brassicas and tomato 95 presenting typical Rhizoctonia symptoms from eight States cropping regions in Brazil (Figure 96 97 1; Supplementary Table 1). Infected roots, stems, leaves and fruits tissues were washed in water running out of tap, superficially disinfected in alcohol (70%) for 30 seconds, 1% sodium 98 hypochlorite solution for one minute and followed by two consecutive washes in sterile distilled 99 100 water and subsequent drying on sterile filter paper. Then, the tissue samples were transferred to Petri dishes containing potato-dextrose-agar (BDA) culture medium, and incubated at ambient 101 102 temperature. Subsequently, pure and hyphal tips cultures were obtained of each isolate. The

isolates were preserved and deposited in the Culture Collection of Phytopathogenic Fungi of
Cariri (CFC) at the Universidade Federal do Cariri (Crato, Ceará, Brazil).

105 The genomic DNA of each isolate was obtained using the Wizard® Genomic DNA Purification Kit (Promega Corporation, Madison, USA). The ITS-rDNA region was amplified 106 107 using the primers ITS1 (5' TTCCGTAGGTGAACCTGCGG 3') and ITS4 (5' TCCTCCGCTTATTGATATGC 3') (White et al. 1990). The PCR mixture reaction was 108 109 prepared by adding 6.25 µL GoTaq® Green Master Mix (2X) (Promega Corporation, Madison, USA), 0.5 μ L of each forward and reverse primer, 4.25 μ L of nuclease-free water and 1 μ L of 110 DNA sample in a final volume of 12.5 µL. A negative control (without DNA template) was 111 112 also included in PCR reactions. The amplifications were performed using the following 113 program: initial denaturation at 94 °C for 5 min, followed by 35 cycles of denaturing at 94 °C for 1 min, annealing at 57 °C for 1 min, extension at 72 °C for 1 min, one final cycle of extension 114 115 at 72 °C for 10 min and final incubation at 4°C. PCR products were purified and sequenced in 116 both directions with the same primers used for amplification.

117 The consensus sequences were assembled using the Staden Package software v. 2.0 118 (Staden et al. 1998) and aligned with GenBank database sequences (Supplementary Table 2) 119 through MAFFT v.7 online interface (Katoh et al. 2002; Katoh and Standley 2013) with the 120 interactive refinement method G-INS-i and manually corrected in MEGA7 (Kumar et al. 2016).

Phylogenetic reconstruction was performed by Bayesian Inference using MRBayes v. 121 3.2.6 (Ronquist and Huelsenbeck 2003) implemented on the CIPRES Science Gateway portal 122 123 (Miller et al. 2010), selecting the evolution model according to the Akaike Information 124 Criterion (AIC). Initially, an analysis was performed for all obtained sequences and ITS 125 sequences of the AGs available in the databases, in order to obtain a preliminary result. 126 Subsequently, analyses were performed for R. solani and Rhizoctonia binucleate isolates separately. The GTR + I + G and HKY + G models were used to *Rhizoctonia* multinucleate 127 128 and binucleate isolates analysis, respectively. Four simultaneous Markov chains have been run for 10000000 generations. The first 25% trees were discarded as the burn-in phase of each analysis. Posterior probabilities were determined from a consensus tree with 75% of the remaining trees. The trees obtained were visualized in the program FigTree v.1.4.2 (Rambaut 2014) and exported to graphics programs. The *Athelia rolfsii* ITS sequence (GenBank Accession N° AY684917) was used as outgroup. The sequences generated from this study were deposited in GenBank (Supplementary Table 1) and the alignments in TreeBASE (S26187).

The pathogenicity and aggressiveness of the different *Rhizoctonia* AGs identified in this 135 study were tested on detached leaves of kale (Brassica oleracea var. acephala; cv. Manteiga 136 da Georgia) and tomato fruits (Solanum lycopersicum; cv. IPA 6), using rice grains as an 137 inoculum source. The fungus inoculum was produced in glass flasks containing 50 g of husked 138 139 parboiled rice and 20 mL of distilled water. Three disks of 5 mm diameter of the fungus culture previously grown in potato-dextrose-agar (PDA) culture were added to each flask, after their 140 sterilization (120°C, 60 minutes, two consecutive days) and cooling (Barbosa et al. 1995). The 141 142 flasks containing the substrate were incubated in a growth chamber BOD type at 25 °C in the dark for 15 days and daily shaken to achieve uniform distribution of the fungus propagules on 143 144 the substrate.

145 Isolates obtained from vegetable brassicas were inoculated in detached kale leaves and 146 isolates obtained from tomato were inoculated in tomato fruits. The fruits and leaves were washed on running water, superficially disinfected in 1% NaOCl solution for 1 minute and 147 rinsed in sterile distilled water. On each one surface, was made an injury using a 1 mm sterile 148 149 needle and then a grain of rice colonized with fungus was deposited. The plant material was placed in plastic trays lined with moistened paper towels with distilled water and kept in a 150 151 humid chamber at room temperature for 4 days. After this period, the lesions diameters were 152 measured in two perpendicular directions using a digital pachymeter. The experimental design was completely randomized with four replicates per isolate. In the control samples, not 153 154 colonized rice grains were deposited. The inoculations were performed twice. The lesion

diameter data induced by the AGs isolates in each host were subjected to an analysis of variance (ANOVA), and the means of were compared using Fisher's least significant difference (LSD) test (P = 0.05).

One hundred and twelve Rhizoctonia isolates were obtained from vegetable brassicas 158 159 (78 isolates) and tomato (34 isolates) in eight Brazilian states, represented by 33 cities (Figure 1; Supplementary Table 1). Based on phylogenetic analyses of ITS region, the isolates were 160 161 separated into seven AGs; being three of R. solani (AG-1-IB, AG-2-2IIIB and AG-4-HGI) and four of binucleate Rhizoctonia associated with a Ceratobasidium teleomorph (AG-A, AG-Fa, 162 AG-G and AG-R). Six AGs were found in vegetable brassicas (AG-1 IB, AG-2-2-IIIB, AG-4 163 164 HGI, AG-A, AG-G and AG-R) and two in tomato (AG-4 HGI and AG-Fa) (Figures 2 and 3; 165 Supplementary Table 1). AG-4-HGI was the most frequent (96 isolates), followed by AG-A (6 isolates), AG-Fa (3 isolates), AG-G (2 isolates), AG-R (2 isolates), AG-1-IB (2 isolates) and 166 167 AG-2-2IIIB (1 isolate).

168 AG-4-HGI was predominant in eight Brazilian states in tomato plants and in all vegetable brassicas collected, associated with symptoms of damping-off, leaf blight, root rot, 169 stem and fruit. AG-1-IB and AG-2-2IIIB were collected in kale and cabbage, respectively, in 170 171 the state of the Distrito Federal, causing symptoms leaf blight. Binucleate Rhizoctonia was 172 found in tomato plants and different brassica species in Distrito Federal and Goiás states; AG-A was detected in broccoli, arugula, purple cabbage and chinese cabbage presenting damping 173 off and leaf blight symptoms; AG-G and AG-R in broccoli and cabbage presenting stem rot and 174 175 the AG-Fa group was found only in tomato plants presenting fruit and root rot symptoms 176 (Figure 1).

AG-4-HGI predominance in tomato was previously reported in Brazil by Kuramae et al. (2003). In brassicas, the occurrence of *Rhizoctonia solani* AG-4-HGI is well known due to previous studies in China, Vietnam, Lao PDR, Japan and Turkey (Yang et al. 2007; Hua et al. 2014; Ireland et al. 2014; Sasaki et al. 2018; Türkkan et al. 2020). However, it is the first report of this anastomosis group infecting brassicas in Brazil. The AG4-HGI group is very important because its wide range of hosts due to the ability to adapt to different cultivation and temperature situations, becoming prevalent in many crops (Harikrishnan and Yang 2004). In Brazil, AG4-HGI has been reported in several cultures, including pumpkin, Brachiaria grass, annatto, peanut, bean, potato, melon, soybean, in addition to weeds (Ceresini and Souza 1996; Fenille et al. 2002; Rosa et al. 2005; Gaino et al. 2010; Silva-Barreto et al. 2010; Inokuti et al. 2018), which highlights the importance of this anastomosis group in the country.

AG-1-IB and AG-2-2IIIB isolates have been reported to be associated with vegetable 188 brassicas in other countries (Yang et al. 2005; Pannecoucque et al. 2008; Pannecoucque and 189 190 Hofte 2009; Shim et al. 2013; Hua et al. 2014). In Brazil, Bolkan and Ribeiro (1985) reported 191 the presence of the AG-1 and AG-2 groups causing leaf rot in radish and cabbage, respectively, by pairing hyphae and tester isolates. However, it is not known which subgroups these isolates 192 belonged to. The advent of molecular biology provided an accurate Rhizoctonia spp. 193 194 identification, at the level of the anastomosis subgroups precisely, in later works. Thus, through the phylogenetic analysis of the ITS-rDNA region, Gaino et al. (2010) reported the presence of 195 196 AG1-1B in cabbage associated with leaf spot in Brazil.

197 Thirteen isolates of binucleate *Rhizoctonia* infecting tomato and vegetable brassicas 198 were identified by this study. It seems to be the first detection of AG-F isolates associated with 199 tomato and AG-A, AG-G and AG-R associated with different vegetable brassicas in Brazil. 200 AG-F associated with tomato was previously described in the United States, causing damping-201 off symptoms (Burpee et al. 1980), while AG-A was reported infecting *Brassica* spp. in China, 202 Vietnam and Turkey (Li et al. 2011; Hua et al. 2014; Türkkan et al. 2020). There are no records 203 of disease in vegetable brassicas related to AG-G and AG-R isolates groups.

Most of characterized isolates (74 isolates) are originally from Distrito Federal which is a potential vegetable producer in Brazil with significant national and international niche markets expansion (Almeida et al. 2017). Consequently, Distrito Federal was the state that presented the greater diversity of AGs, in nine cultivation areas, with more than one AG byarea.

209 Different factors may be related to Rhizoctonia anastomosis groups diversity and distribution, such as climatic conditions, cultivation patterns, genetic flexibility and degree of 210 211 adaptation (Godoy-Lutz et al. 2008). Rhizoctonia is a fungus that survives in hot and cold soils, it remains active in a variety of temperatures and it is adapted to different environments (Olsen 212 213 and Young 2011). The tropical climate in Distrito Federal is characterized by strong seasonality; cold and dry season lasts from late March to late September and hot and humid season in the 214 remaining months (Lorz et al. 2012). This climatic condition is probably favorable to the 215 216 adaptation of the different anastomosis groups identified.

217 All isolates obtained from tomatoes were pathogenic, causing rot in tomato fruit. However, there was no significant difference (P > 0.005) in agressiveness between the two 218 219 identified anastomosis groups (AG-4-HGI and AG-F), once both caused lesions with a diameter 220 of 20.9 and 18.3 mm, respectively. In turn, not all brassica isolates were pathogenic to detached 221 kale leaves. The six isolates of AG-A identified in this study did not cause disease in kale leaves, as well as two AG-4-HGI isolates (CFC-0935 and CFC-0955), one AG-G isolate (CFC-0961) 222 223 and one AG-R isolate (CFC-0967). This result was possibly due to the host specificity, once 224 the isolates that did not cause symptoms came from broccoli, arugula, Chinese cabbage and purple cabbage, as well as the intrinsic characteristics of the anastomosis groups. A similar 225 226 result was reported by Hua et al. (2014), in which AG-A isolates were not pathogenic to 227 detached cabbage leaves.

AG isolates of *Rhizoctonia* obtained from vegetable brassicas differed in aggressiveness (P < 0.005). AG-4 HGI and AG-2-2IIB isolates were significantly more aggressive to kale leaves (17.6 and 10.3 mm, respectively), while AG-G, AG-R and AG-1-IB caused the smallest lesions diameters (5.1, 4.9 and 2.0 mm, respectively) (Table 1). Severe symptoms caused by AG-4-HGI and AG-2 in vegetable brassica plants have been reported in different studies (Pannecoucque et al. 2008; Hua et al. 2014; Ireland et al. 2014; Türkkan et al. 2020), reinforcing
the result obtained in this study.

The present study represented the first report in Brazil of the occurrence of AG-Fa infecting tomatoes and AG-4-HGI, AG-2-2IIIB, AG-A, AG-G and AG-R infecting vegetable brassicas. The knowledge of these anastomosis groups is extremely important to understand the ecology of the pathogen, epidemiology of the disease and to further development of management strategies.

240

241 Acknowledgments

242

The first author thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for a doctorate scholarship. A. Reis and S. J. Michereff also acknowledge the CNPq research fellowship.

247

248 Compliance with Ethical Standards

249

All principles of ethical and professional conduct have been followed during this research andelaboration of this manuscript.

- Conflict of interest The authors declare that they have no conflict of interest.
- 253 Research involving Human Participants and/or Animals Not applicable
- Informed consent All authors have reviewed the manuscript and approved its submission to
- the European Journal of Plant Pathology
- 256

257

Agarwal, D. K. (2010). *Rhizoctonia* D.C.: taxonomy, ecology and management. In K. G.
Mukerji, & C. Manoharachary (Eds.), *Taxonomy and Ecology of Indian Fungi* (pp. 19-

- 263 50). New Delhi: I. K. International Publishing House.
- Almeida, I. L., Junqueira, A. M. R., & Dias, C. N. (2017). Caracterização de consumidores,
 atributos de mercado e estratégias para o crescimento da cadeia produtiva de hortaliças
 orgânicas no Distrito Federal. Brasília: CODEPLAN.
- Barbosa, M. A. G., Michereff, S. J., Mariano, R. L. R., & Maranhão, E. (1995). Biocontrole de *Rhizoctonia solani* em caupi pelo tratamento de sementes com *Pseudomonas* spp.
 fluorescens. *Summa Phytopathologica*, 21,151-157.
- Bolkan, H. A., & Ribeiro, W. R. C. (1985). Anastomosis groups and pathogenicity of
 Rhizoctonia solani isolates from Brazil. *Plant Disease*, 69, 599-601.
- Burpee, L. L., Sanders, P. L., Cole Jr, H., & Sherwood, R. T. (1980). Anastomosis groups
 among isolates of *Ceratobasidium cornigerum* and related fungi. *Mycologia*, 72, 689701.
- Camargo Filho, W. P., & Camargo, F. P. (2017). A quick review of the production and
 commercialization of the main vegetables in Brazil and the world from 1970 to 2015. *Horticultura Brasileira*, *35*, 160-166.
- 278 Carling, D. E. (1996). Grouping in *Rhizoctonia solani* by hyphal anastomosis reaction. In B.
- Sneh, S. Jabaji-Hare, S. Neate & G. Dijist (Eds.), *Rhizoctonia species: taxonomy*, *molecular biology, ecology, pathology and disease control* (pp. 35-47). Dordrecht:
 Academic Publishers.
- Ceresini, P. C., & Souza, N. L. (1996). Caracterização cultural e fisiológica *de Rhizoctonia solani* GA-4 HGI associado a vagens de amendoinzeiro. *Fitopatologia Brasileira*, *21*,
 443-454.

- Dong, W., Li, Y., Duan, C., Li, X., Naito, S., Conner, R. L., Yang, G., & Li, C. (2017).
 Identification of AG-V, a new anastomosis group of binucleate *Rhizoctonia* spp. from
 taro and ginger in Yunnan province. *European Journal of Plant Pathology*, *148*, 895-906.
- 288 Driscoll, A. O. (2020). *Diseases of vegetable brassicas*. Kenilworth: AHDB Horticulture.
- Fang, X., Finnegan, P. M., & Barbetti, M. J. (2013). Wide variation in virulence and genetic
 diversity of binucleate *Rhizoctonia* isolates associated with root rot of strawberry in

Western Australia. *PloS One*, 8, https://doi.org/10.1371/journal.pone.0055877

- 292 FAO (2020) Food and Agriculture Organization. http://www.fao.org/faostat/en/#data/QC>.
- 293 Fenille, R. C., De Souza, N. L., & Kuramae, E. E. (2002). Characterization of Rhizoctonia
- *solani* associated with soybean in Brazil. *European Journal of Plant Pathology*, *108*, 783792.
- Gaino, A. P. S. C., Basseto, M. A., Gasparotto, L., Poltronieri, L. S., & Ceresini, P. C. (2010).
- Inferência filogenética revela a complexa etiologia das manchas areolada e foliar em
 seringueira e em outras espécies cultivadas na Amazônia. *Acta Scientiarum. Agronomy*,
 32, 385-395.
- Godoy-Lutz, G., Kuninaga, S., Steadman, J. R., & Powers, K. (2008). Phylogenetic analysis of
 Rhizoctonia solani subgroups associated with web blight symptoms on common bean
 based on ITS-5.8 S rDNA. *Journal of General Plant Pathology*, 74, 32-40.
- Gondal, A. S., Rauf, A., & Naz, F. (2019a). Anastomosis groups of *Rhizoctonia solani*associated with tomato foot rot in Pothohar Region of Pakistan. *Scientific Reports*, *9*, 112.
- Gondal, A. S., Rauf, A., & Naz, F. (2019b). The first report of tomato foot rot caused by
 Rhizoctonia solani AG-3 PT from Pakistan. *Journal of Plant Pathology*, *101*, 425.
- 308 Gónzalez, D., Rodriguez-Carres, M., Boekhout, T., Stalpers, J., Kuramae, E. E., Nakatani, A.
- K., Vilgalys, R., & Cubeta, M. A. (2016). Phylogenetic relationships of *Rhizoctonia* fungi
 within the Cantharellales. *Fungal Biology*, *120*, 603-619.

- González-García, V. G., Onco, M. P., & Susan, V. R. (2006). Biology and systematics of the
 form genus *Rhizoctonia*. *Spanish Journal of Agricultural Research*, *4*, 55-79.
- 313 González, M., Pujol, M., Metraux, J., González-Garcia, V., Bolton, M. D., & Borrás-Hidalgo,
- O (2011). Tobacco leaf spot and root rot caused by *Rhizoctonia solani* Kühn. *Molecular Plant Pathology*, *12*, 209-216.
- Harikrishnan, R., & Yang, X. B. (2004). Recovery of anastomosis groups of *Rhizoctonia solani*
- from different latitudinal positions and influence of temperatures on their growth and
 survival. *Plant Disease*, *88*, 817-823.
- Hua, G. K. H., Bertier, L., Soltaninejad, S., & Höfte, M. (2014). Cropping systems and cultural
 practices determine the *Rhizoctonia* anastomosis groups associated with *Brassica* spp. in
 Vietnam. *PloS One*, 9, e111750. doi:10.1371/journal.pone.0111750.
- Hyakumachi, M., & Ui, T. (1987). Non-self-anastomosing isolates of *Rhizoctonia solani*obtained from fields of sugarbeet monoculture. *Transactions of the British Mycological Society*, 89, 155-159.
- Inokuti, E. M., Reis, A., Ceresini, P. C., Câmara, M. P., & Michereff, S. J. (2018). Diversity
 and pathogenicity of anastomosis groups of *Rhizoctonia* associated with potato stem
 canker and black scurf diseases in Brazil. *European Journal of Plant Pathology*, *153*,
 1333-1339.
- Ireland, K. B., Weir, B. S., Phantavong, S., Phitsanoukane, P., Vongvichid, K., Vilavong, S.,
 Tesoriero, L. A., & Burgess, L. W. (2014). First report of *Rhizoctonia solani* anastomosis
 group AG-4 HG-I in the Lao PDR. *Australasian Plant Disease Notes*,
 10, doi:10.1007/s13314-014-0152-z.
- Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version
 7: improvements in performance and usability. *Molecular Biology and Evolution*, *30*,
 772-780.

- Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). MAFFT: a novel method for rapid
 multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research*, *30*, 3059-3066.
- Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics
 analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution*, *33*, 1870-1874.
- 341 Kuramae, E. E., Buzeto, A. L., Ciampi, M. B., & Souza, N. L. (2003). Identification of
- *Rhizoctonia solani* AG 1-IB in lettuce, AG 4 HG-I in tomato and melon, and AG 4 HGIII in broccoli and spinach, in Brazil. *European Journal of Plant Pathology*, *109*, 391344 395.
- Kuramae, E. E., Buzeto, A. L., Nakatani, A. K., & Souza, N. L. (2007). rDNA-based
 characterization of a new binucleate *Rhizoctonia* spp. causing root rot on kale in
 Brazil. *European Journal of Plant Pathology*, *119*, 469-475.
- Li, Y. Q., Lei, L. P., Dong, W. H., Wang, S. M., Naito, S., & Yang, G. H. (2011). Molecular
 diversity of binucleate *Rhizoctonia* AG-A in China. *Phytoparasitica*, *39*, 461.
- 350 Lorz, C., Abbt-Braun, G., Bakker, F., Borges, P., Börnick, H., Fortes, L., ... & Makeschin, F.

351 (2012). Challenges of an integrated water resource management for the Distrito Federal,

- Western Central Brazil: climate, land-use and water resources. *Environmental Earth Sciences*, 65, 1575-1586.
- Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for
 inference of large phylogenetic trees. *Proceedings of the Gateway Computing Environments Workshop (GCE)*, https://doi.org/ 10.1109/GCE.2010.5676129.
- 357 Misawa, T., & Kuninaga, S. (2010). The first report of tomato foot rot caused by *Rhizoctonia*
- *solani* AG-3 PT and AG-2-Nt and its host range and molecular characterization. *Journal of General Plant Pathology*, *76*, 310-319.

- Misawa, T., Kurose, D., Mori, M., & Toda, T. (2018). Characterization of Japanese *Rhizoctonia solani* AG-2-1 isolates using rDNA-ITS sequences, culture morphology, and growth
 temperature. *Journal of General Plant Pathology*, *84*, 387-394.
- Ogoshi, A. (1987). Ecology and pathogenicity of anastomosis and intraspecific groups of
 Rhizoctonia solani Kuhn. *Annual Review of Phytopathology*, 25, 125-143.
- Olsen, M. W. & Young, G. J. (2011). *Damping Off.* Cooperative Extension, College of
 Agriculture, The University of Arizona.
- Pannecoucque, J., & Höfte, M. (2009). Interactions between cauliflower and *Rhizoctonia*anastomosis groups with different levels of aggressiveness. *BMC Plant Biology*, *9*, 95.
- Pannecoucque, J., Van Beneden, S., & Höfte, M. (2008). Characterization and pathogenicity of
- *Rhizoctonia* isolates associated with cauliflower in Belgium. *Plant Pathology*, *57*, 737746.
- 372 Patil, H. J., & Solanki, M. K. (2016). Molecular prospecting: Advancement in diagnosis and
- 373 control of *Rhizoctonia solani* diseases in plants. In P. Kumar, V. K. Gupta, A. J. Tiwari,
- 374 & M. Kamle (Eds.), Current trends in plant disease diagnostics and management
- 375 *practices* (pp. 165-185). Berna: Springer International.
- Pourmahdi, A., & Taheri, P. (2015). Genetic diversity of *Thanatephorus cucumeris* infecting
 tomato in Iran. *Journal of Phytopathology*, *163*, 19-32.
- Rambaut, A (2014) *Figtree, a graphical viewer of phylogenetic trees.* 1.4.2 ed. Edinburgh: The
 author, Institute of Evolutionary Biology, University of Edinburgh.
- Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under
 mixed models. *Bioinformatics*, 19, 1572-1574.
- Rosa, D. D., Fenille, R. C., De Souza, N. L., & Kuramae, E. E. (2005). Caracterização
 citomorfológica, molecular e patogênica de isolados de *Rhizoctonia solani* de batata. *Summa Phytopatologica*, *31*, 133-141.

385	Sasaki, D.	, Haga,	Н.,	Matsuda,	К.,	&	Misawa,	T.	(2018).	Damping-off	of	kale	caused	by
386	Rhiz	octonia	sola	ni AG-4 H	IG-I	. Jc	apanese Jo	our	nal of Pl	hytopathology.	, 84,	, 158	-160.	

- Sharon, M., Kuninaga, S., Hyakumachi, M., & Sneh, B. (2006). The advancing identification
 and classification of *Rhizoctonia* spp. using molecular and biotechnological methods
 compared with the classical anastomosis grouping. *Mycoscience*, 47, 299-316.
- 390 Shim, C. K., Kim, M. J., Kim, Y. K., Jee, H. J., Hong, S. J., Park, J. H., Eun-Jang, H., & Yun,
- J. C. (2013). Leaf rot and leaf ring spot caused by *Rhizoctonia solani* in chinese
 cabbage. *Research in Plant Disease*, *19*, 300-307.
- 393 Silva-Barreto, F. A. D., Pereira, W. V., Ciampi, M. B., Câmara, M. P. S., & Ceresini, P. C.

394 (2010). Associação de *Rhizoctonia solani* Grupo de Anastomose 4 (AG-4 HGI e HGIII)

- à espécies de plantas invasoras de área de cultivo de batata. *Summa Phytopathologica*, *36*, 145-154.
- Sneh, B., Burpee, L., & Ogoshi, A. (1991). *Identification of Rhizoctonia species*. Saint Paul:
 APS press.
- Staden, R., Beal, K. F., & Bonfield, J. K. (1998). The staden package. In: S. Misener, & S. A.
 Krawetz (Eds.), *Bioinformatics methods and protocols* (pp. 115-130). Totowa: Humana
- 401 Press.
- Taheri, P., & Tarighi, S. (2012). Genetic and virulence analysis of *Rhizoctonia* spp. associated
 with sugar beet root and crown rot in the northeast region of Iran. *Plant Disease*, *96*, 398404 408.
- Tenório, D. A., Medeiros, E. V., Lima, C. S., Silva, J. M., Barros, J. A., Neves, R. P., &
 Laranjeira, D. (2019). Biological control of *Rhizoctonia solani* in cowpea plants using
 yeast. *Tropical Plant Pathology*, 44, 113-119.
- Türkkan, M., Kılıçoğlu, M. Ç., & Erper, I. (2020). Characterization and pathogenicity of
 Rhizoctonia isolates collected from *Brassica oleracea* var. *acephala* in Ordu, Turkey.
- 410 *Phytoparasitica*, *48*, 273-286.

- White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of
 fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J.
 Sninsky, & T. J. White (Eds.), *PCR protocols: A guide to methods and applications* (pp.
 315–322). New York: Academic Press.
- 415 Yang, G. H., Chen, H. R., Naito, S., Wu, J. Y., He, X. H., & Duan, C. F. (2005). Occurrence of
- foliar rot of pak choy and Chinese mustard caused by *Rhizoctonia solani* AG1-IB in
 China. *Journal of General Plant Pathology*, *71*, 377-379.
- 418 Yang, G. H., Chen, J. Y., & Pu, W. Q. (2007). First report of head rot of cabbage and web-
- blight of snap bean caused by *Rhizoctonia solani* AG 4 HG-I. *New Disease Reports*, *14*,
 20.
- Zhao, C., Li, Y., Wu, S., Wang, P., Han, C., & Wu, X. (2019). Anastomosis group and
 pathogenicity of *Rhizoctonia* spp. associated with seedling damping-off of sugar beet in
 China. *European Journal of Plant Pathology*, *153*, 869-878.

Figure 1 Collection location of *Rhizoctonia* anastomosis groups (AGs) isolates associated with
brassica and tomato in Brazil. Circles represent association frequency of each AG with plants
exhibiting symptoms in each site sampled. Numbers above the circles (1–11) represents the
hosts identification. Roman numbers (I-XXXIII) represent the sites identification in
Supplementary Table 1. ES, Espírito Santo; DF, Distrito Federal; GO, Goiás; MG, Minas
Gerais; MT, Mato Grosso; PE, Pernambuco; PR, Paraná; SP, São Paulo.

0.62	CFC-0915, tomato	
0.02	CFC-0951, cauliflower	
	CFC-0952, cauliflower	
	CFC-0990, arugula	
0.54	CFC-0980, cauliflower	
0.04	CFC-0993, purple cabbage	
	CFC-0995, purple cabbage	
	CFC-0950, cauliflower	
	CFC-0888, tomato	
	9r CFC-0914, cauliflower	
	CFC-0887, tomato	
1	r CFC-0948, tomato	
	CFC-0949, tomato	
	1 - CEC-0955 arugula	
	CEC-0972 arugula	
	CFC-0974 kale	
	CEC-0935 arugula	
0.94	CEC-0936 kale	
0.88	CFC-0899, tomato	
	CFC-0902, tomato	
	CFC-0963, cress	
0.91	∫CFC-0907, tomato	
0.69	└ CFC-0999, arugula	
	CFC-0982, chinese cabbage	
	_[R. solani STST03-2 (AG-4-HGI)	
1	R. solani HNDD01-4 (AG-4-HGI)	AG-4-HGI
	^L R. solani GM-3 (AG-4-HGI)	
0.81	ر <i>R. solani</i> AH-1 (AG-4-HGI)	
0.81	,	
0.81 0.85	r <i>R. solani</i> AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress	
0.81— 0.85	_ <i>R. solani</i> AH-1 (AG-4-HGI) _ CFC-0916, tomato CFC-0905, cress 0.8⊢ CFC-0898, tomato	
0.81— 0.85	r <i>R. solani</i> AH-1 (AG-4-HGI) └─ CFC-0916, tomato CFC-0905, cress 0.8┌─ CFC-0898, tomato 1 └─ CFC-0912, broccoli	
0.81— 0.85	<i>r R. solani</i> AH-1 (AG-4-HGI) └ CFC-0916, tomato CFC-0905, cress 0.8 CFC-0898, tomato 1 CFC-0912, broccoli CFC-0917, tomato	
0.81— 0.85		
0.81 0.85 0.89	<i>R. solani</i> AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8 _□ CFC-0898, tomato 1 CFC-0912, broccoli CFC-0917, tomato CFC-0944, cabbage CFC-0893, tomato	
0.81 0.85 0.89	<i>R. solani</i> AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8 CFC-0898, tomato 1 CFC-0912, broccoli CFC-0917, tomato CFC-0944, cabbage CFC-0893, tomato CFC-0944, cabbage CFC-0992, purple cabbage	
0.81 0.85 0.89 0.74	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8 — CFC-0898, tomato 1 CFC-0912, broccoli — CFC-0917, tomato CFC-0944, cabbage CFC-0893, tomato CFC-0992, purple cabbage CFC-0992, arugula	
0.81 0.85 0.89 0.74	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8 CFC-0912, broccoli CFC-0917, tomato CFC-0944, cabbage CFC-0992, purple cabbage CFC-0971, arugula CFC-0945, broccoli	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8 CFC-0912, broccoli CFC-0917, tomato CFC-0944, cabbage CFC-0992, purple cabbage CFC-0945, broccoli CFC-0945, broccoli CFC-0958, cress	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8 CFC-0912, broccoli CFC-0917, tomato CFC-0944, cabbage CFC-0992, purple cabbage CFC-0945, broccoli CFC-0945, cress CFC-0945, cress CFC-0945, cress CFC-0945, broccoli CFC-0945, broccoli CFC-0945, broccoli CFC-0945, broccoli CFC-0945, broccoli	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8— CFC-0898, tomato 1 CFC-0912, broccoli — CFC-0917, tomato CFC-0944, cabbage CFC-0992, purple cabbage CFC-0992, purple cabbage CFC-0945, broccoli CFC-0958, cress CFC-0910, tomato	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8 CFC-0898, tomato 1 CFC-0912, broccoli - CFC-0917, tomato CFC-0944, cabbage CFC-0992, purple cabbage CFC-0945, broccoli CFC-0945, broccoli CFC-0958, cress - CFC-0910, tomato CFC-0806, tomato CFC-0958, cress - CFC-0810, tomato CFC-0866, tomato CFC-0866, tomato	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8 CFC-0898, tomato 1 CFC-0912, broccoli - CFC-0917, tomato CFC-0992, purple cabbage CFC-0992, purple cabbage CFC-0944, sress CFC-0992, purple cabbage CFC-0945, broccoli CFC-0958, cress CFC-0910, tomato CFC-0886, tomato CFC-0958, cress CFC-0958, tomato	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8-CFC-0898, tomato 1 CFC-0912, broccoli -CFC-0917, tomato CFC-0944, cabbage CFC-0992, purple cabbage CFC-0992, purple cabbage CFC-09945, broccoli CFC-0958, cress CFC-0910, tomato CFC-0958, cress CFC-0960, broccoli CFC-0960, broccoli CFC-0925, tomato CFC-0960, broccoli CFC-0925, tomato CFC-0960, broccoli	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8_CFC-0898, tomato 1 CFC-0917, broccoli CFC-0944, cabbage CFC-0992, purple cabbage CFC-0945, broccoli CFC-0994, rugula CFC-0958, cress CFC-0910, tomato CFC-0958, cress CFC-0910, tomato CFC-0958, cress CFC-0960, broccoli CFC-0925, tomato CFC-0925, tomato CFC-0925, tomato CFC-0926, cauliflower	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8_CFC-0898, tomato 1 CFC-0917, broccoli CFC-0944, cabbage CFC-0993, tomato CFC-0994, cabbage CFC-0992, purple cabbage CFC-0971, arugula CFC-0958, cress CFC-0958, cress CFC-0910, tomato CFC-0958, cress CFC-0960, broccoli CFC-0925, tomato CFC-0925, tomato CFC-0906, cauliflower CFC-0906, cauliflower	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8_CFC-0898, tomato 1 CFC-0912, broccoli CFC-0944, cabbage CFC-0993, tomato CFC-0992, purple cabbage CFC-0958, cress CFC-0958, cress CFC-0958, cress CFC-0958, cress CFC-0958, cress CFC-0960, broccoli CFC-0925, tomato CFC-0906, cauliflower CFC-0903, tomato	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8 CFC-0907, tomato 1 CFC-0912, broccoli CFC-0944, cabbage CFC-0933, tomato CFC-0944, cabbage CFC-0992, purple cabbage CFC-0971, arugula CFC-0945, broccoli CFC-0958, cress CFC-0958, cress CFC-0960, broccoli CFC-0906, cauliflower CFC-0903, tomato CFC-0934, cauliflower CFC-0934, broccoli	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8 CFC-0907, tomato 1 CFC-0912, broccoli CFC-0944, cabbage CFC-092, purple cabbage CFC-0945, broccoli CFC-0945, broccoli CFC-0958, cress CFC-0958, cress CFC-0958, tomato CFC-0958, cress CFC-0960, broccoli CFC-0906, cauliflower CFC-0903, tomato CFC-0934, cauliflower CFC-0934, broccoli	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0916, cress 0.8—CFC-0898, tomato 1 CFC-0912, broccoli CFC-0917, tomato CFC-0992, purple cabbage CFC-0944, cabbage CFC-0992, purple cabbage CFC-0945, broccoli CFC-0945, broccoli CFC-0958, cress CFC-0910, tomato CFC-0958, cress CFC-0958, tomato CFC-0958, cress CFC-0958, tomato CFC-0925, tomato CFC-0906, cauliflower CFC-0903, tomato CFC-0934, broccoli CFC-0991, arugula CFC-0991, arugula CFC-0966, cabbage	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8—CFC-0898, tomato 1 CFC-0912, broccoli —CFC-0917, tomato CFC-0992, purple cabbage CFC-0944, cabbage CFC-0992, purple cabbage CFC-0945, broccoli CFC-0945, broccoli CFC-0958, cress CFC-0910, tomato CFC-0906, broccoli CFC-0906, cauliflower CFC-0903, tomato CFC-0903, tomato CFC-0904, cauliflower CFC-0903, tomato CFC-0903, tomato CFC-0904, cauliflower CFC-0903, tomato CFC-0904, cauliflower CFC-0903, tomato CFC-0903, tomato CFC-0903, tomato CFC-0904, arugula CFC-0905, cabbage CFC-0906, cabbage CFC-0908, arugula	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8-CFC-0912, broccoli CFC-0917, tomato CFC-0923, tomato CFC-0944, cabbage CFC-0929, purple cabbage CFC-0945, broccoli CFC-0958, cress CFC-0910, tomato CFC-0958, cress CFC-0910, tomato CFC-0960, broccoli CFC-0906, cauliflower CFC-0904, cauliflower CFC-0903, tomato CFC-0904, cauliflower CFC-0904, broccoli CFC-0905, cress CFC-0910, tomato CFC-0910, tomato CFC-0903, tomato CFC-0904, cauliflower CFC-0903, tomato CFC-0934, broccoli CFC-0	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8_CFC-0912, broccoli CFC-0917, tomato CFC-0944, cabbage CFC-0922, purple cabbage CFC-0944, cress CFC-0992, purple cabbage CFC-0917, arugula CFC-0928, cress CFC-0910, tomato CFC-0958, cress CFC-0910, tomato CFC-0958, cress CFC-0906, broccoli CFC-0906, cauliflower CFC-0906, cauliflower CFC-0903, tomato CFC-0934, broccoli CFC-0934, broccoli CFC-0906, cauliflower CFC-0907, arugula CFC-0934, broccoli CFC-0939, arugula CFC-0939, arugula CFC-0939, arugula CFC-0931, chinese cabbage	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8_CFC-0898, tomato 1 CFC-0917, broccoli CFC-0944, cabbage CFC-0992, purple cabbage CFC-0945, broccoli CFC-0992, purple cabbage CFC-0958, cress CFC-0910, tomato CFC-0958, cress CFC-0958, cress CFC-0960, broccoli CFC-0905, tomato CFC-0958, cress CFC-0960, broccoli CFC-0906, cauliflower CFC-0906, cauliflower CFC-0903, tomato CFC-0991, arugula CFC-0903, tomato CFC-0991, arugula CFC-0989, arugula CFC-0989, arugula CFC-0981, chinese cabbage CFC-0983, chinese cabbage	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8_CFC-0898, tomato 1 CFC-0917, broccoli CFC-0944, cabbage CFC-0992, purple cabbage CFC-0958, cress CFC-0958, cress CFC-0958, cress CFC-0958, cress CFC-0958, cress CFC-0958, cress CFC-0960, broccoli CFC-0906, cauliflower CFC-0906, cauliflower CFC-0903, tomato CFC-0910, tomato CFC-0960, broccoli CFC-0910, tomato CFC-0911, arugula CFC-0931, tomato CFC-0931, arugula CFC-0981, arugula CFC-0981, chinese cabbage CFC-0983, chinese cabbage CFC-0983, chinese cabbage CFC-0983, chinese cabbage	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) CFC-0916, tomato CFC-0905, cress 0.8_CFC-0898, tomato 1 CFC-0917, broccoli CFC-0944, cabbage CFC-0992, purple cabbage CFC-0958, cress CFC-0958, cress CFC-0958, cress CFC-0958, cress CFC-0958, cress CFC-0958, cress CFC-0960, broccoli CFC-0906, cauliflower CFC-0903, tomato CFC-0904, cauliflower CFC-0903, tomato CFC-0904, cabbage CFC-09058, cress CFC-0910, tomato CFC-0910, tomato CFC-0906, cauliflower CFC-0907, arugula CFC-0907, purple cabbage CFC-0991, arugula CFC-0997, purple cabbage CFC-0981, chinese cabbage CFC-0983, chinese cabbage CFC-0937, radish CFC-0937, radish	
0.81 0.85 0.89 0.74 0.9	R. solani AH-1 (AG-4-HGI) $-$ CFC-0916, tomatoCFC-0916, cress $0.8-$ CFC-0898, tomato $-$ CFC-0912, broccoli $-$ CFC-0917, tomatoCFC-0944, cabbageCFC-0992, purple cabbageCFC-0945, broccoliCFC-0945, broccoliCFC-0958, cressCFC-0910, tomatoCFC-0958, cressCFC-0958, cressCFC-0960, broccoliCFC-0958, cressCFC-0960, broccoliCFC-0960, broccoliCFC-0903, tomatoCFC-09045, broccoliCFC-0905, cauliflowerCFC-0906, cauliflowerCFC-09091, arugulaCFC-0993, tomatoCFC-0994, purple cabbageCFC-0995, tomatoCFC-0906, cabbageCFC-0907, purple cabbageCFC-0989, arugulaCFC-0981, chinese cabbageCFC-0937, radishCFC-0940, cauliflowerCFC-0940, cauliflower	
0.81 0.85 0.74 0.9	R. solani AH-1 (AG-4-HGI) $-$ CFC-0916, tomatoCFC-0905, cress $0.8-$ CFC-0898, tomato $-$ CFC-0912, broccoli $-$ CFC-0917, tomatoCFC-0944, cabbageCFC-0992, purple cabbageCFC-0945, broccoliCFC-0945, broccoliCFC-0958, cressCFC-0910, tomatoCFC-0958, cressCFC-0900, broccoliCFC-0958, cressCFC-0906, broccoliCFC-0906, cauliflowerCFC-0906, cauliflowerCFC-0903, tomatoCFC-0903, tomatoCFC-0903, tomatoCFC-09091, arugulaCFC-0903, tomatoCFC-0903, tomatoCFC-0903, tomatoCFC-0904, cauliflowerCFC-0907, purple cabbageCFC-0907, nurple cabbageCFC-0981, chinese cabbageCFC-0937, radishCFC-0940, cauliflowerCFC-0940, cauliflower	

Figure 2 Phylogenetic tree constructed by the Bayesian Inference obtained from the alignment of the sequences of the ITS-rDNA region of the *Rhizoctonia solani* isolates. Numbers at nodes indicate posterior probabilities values. The bar represents the number of changes in the nucleotide sequence of each 100 bp. The reference sequences retrieved from GenBank are shown in bold type

446 **Table 1** Comparison of lesion diameter on kale leaves caused by different anastomosis groups

447 of *Rhizoctonia* associated to vegetable brassicas in this study.

449

Anastomosis group	Number of isolates	Lesion diameter (mm) (Mean ± SE)
AG-1 IB	2	$2.0 \pm 1.1 \text{ cd}$
AG-2-2-IIIB	1	$10.3 \pm 1.1 \text{ ab}$
AG-4 HGI	65	17.6 ± 1.3 a
AG-A	6	$0.0\pm0.0\;d$
AG-G	2	5.1 ± 1.4 bc
AG-R	2	4.9 ± 1.2 bc

450 Lesion diameter followed by different letters are significant different (P < 0.05) based on

451 Fisher's LSD test.

452 Supplementary Table 1 *Rhizoctonia* isolates collected from Brazilian vegetables fields and characterized in this study and GenBank accession codes

Isolate code ^a	Collection location ^b	Host	AG ^c	GenBank accession no.
CFC-0908	Gama - DF	Arugula	4-HGI	MT216875
CFC-0919	Brazlândia - DF	Arugula	4-HGI	MT216879
CFC-0920	Brazlândia - DF	Arugula	4-HGI	MT216880
CFC-0921	Brazlândia - DF	Arugula	4-HGI	MT216881
CFC-0926	Santa Maria de Jetibá - ES	Arugula	4-HGI	MT216883
CFC-0927	Santa Maria de Jetibá - ES	Arugula	4-HGI	MT216884
CFC-0935	Samambaia - DF	Arugula	4-HGI	MT216888
CFC-0938	Samambaia - DF	Arugula	4-HGI	MT216891
CFC-0955	Samambaia - DF	Arugula	4-HGI	MT216906
CFC-0970	Ceilândia - DF	Arugula	4-HGI	MT216919
CFC-0971	Ceilândia - DF	Arugula	4-HGI	MT216920
CFC-0972	Samambaia - DF	Arugula	4-HGI	MT216921
CFC-0973	Samambaia - DF	Arugula	4-HGI	MT216922
CFC-0989	Vargem Bonita - DF	Arugula	4-HGI	MT216938
CFC-0990	Vargem Bonita - DF	Arugula	4-HGI	MT216939
CFC-0991	Vargem Bonita - DF	Arugula	4-HGI	MT216940
CFC-0999	Chã Grande - PE	Arugula	4-HGI	MT216947
CFC-0956	Brazlândia - DF	Arugula	А	MT216907

453 for the sequences obtained in this study.

CFC-0957	Brazlândia - DF	Arugula	А	MT216908
CFC-0912	Samambaia - DF	Broccoli	4-HGI	MT216876
CFC-0932	Padre Bernardo - GO	Broccoli	4-HGI	MT216885
CFC-0933	Padre Bernardo - GO	Broccoli	4-HGI	MT216886
CFC-0934	Padre Bernardo - GO	Broccoli	4-HGI	MT216887
CFC-0939	Samambaia - DF	Broccoli	4-HGI	MT216892
CFC-0942	Padre Bernardo - GO	Broccoli	4-HGI	MT216895
CFC-0945	Samambaia - DF	Broccoli	4-HGI	MT216898
CFC-0960	Brazlândia - DF	Broccoli	4-HGI	MT216910
CFC-0969	Samambaia - DF	Broccoli	4-HGI	MT216918
CFC-0946	Ceilândia - DF	Broccoli	А	MT216899
CFC-0961	Brazlândia - DF	Broccoli	G	MT216911
CFC-0996	Recanto das Emas - DF	Broccoli	G	MT216945
CFC-0924	Brazlândia - DF	Cabbage	2-2IIIB	MT216882
CFC-0941	Samambaia - DF	Cabbage	4-HGI	MT216894
CFC-0944	Samambaia - DF	Cabbage	4-HGI	MT216897
CFC-0966	Cidade Estrutural - DF	Cabbage	4-HGI	MT216916
CFC-0889	Santo Antônio do Descoberto - GO	Cabbage	R	MT216871
CFC-0894	Camocim de São Félix - PE	Cauliflower	4-HGI	MT216872
CFC-0906	Bragança Paulista - SP	Cauliflower	4-HGI	MT216874
CFC-0914	Santo Antônio de Goiás - GO	Cauliflower	4-HGI	MT216878
CFC-0940	Padre Bernardo - GO	Cauliflower	4-HGI	MT216893

CFC-0943	Ceilândia - DF	Cauliflower	4-HGI	MT216896
CFC-0950	Brazlândia - DF	Cauliflower	4-HGI	MT216901
CFC-0951	Brazlândia - DF	Cauliflower	4-HGI	MT216902
CFC-0952	Brazlândia - DF	Cauliflower	4-HGI	MT216903
CFC-0953	Brazlândia - DF	Cauliflower	4-HGI	MT216904
CFC-0976	Gama - DF	Cauliflower	4-HGI	MT216925
CFC-0980	Recanto das Emas - DF	Cauliflower	4-HGI	MT216929
CFC-0947	Cidade Estrutural - DF	Chinese cabbage	1-IB	MT216900
CFC-0981	Brazlândia - DF	Chinese cabbage	4-HGI	MT216930
CFC-0982	Ceilândia - DF	Chinese cabbage	4-HGI	MT216931
CFC-0983	Ceilândia - DF	Chinese cabbage	4-HGI	MT216932
CFC-0986	Vargem Bonita - DF	Chinese cabbage	4-HGI	MT216935
CFC-0988	Vargem Bonita - DF	Chinese cabbage	4-HGI	MT216937
CFC-0985	Vargem Bonita - DF	Chinese cabbage	А	MT216934
CFC-0987	Vargem Bonita - DF	Chinese cabbage	А	MT216936
CFC-0967	Ceilândia - DF	Chinese cabbage	R	MT216917
CFC-0905	Holambra - SP	Cress	4-HGI	MT216873
CFC-0954	Samambaia - DF	Cress	4-HGI	MT216905
CFC-0958	Samambaia - DF	Cress	4-HGI	MT216909
CFC-0962	Cidade Estrutural - DF	Cress	4-HGI	MT216912
CFC-0963	Cidade Estrutural - DF	Cress	4-HGI	MT216913
CFC-0964	Samambaia - DF	Cress	4-HGI	MT216914

CFC-0965	Samambaia - DF	Cress	4-HGI	MT216915
CFC-0975	Ceilândia - DF	Cress	4-HGI	MT216924
CFC-0984	Samambaia - DF	Kale	1-IB	MT216933
CFC-0913	Santo Antônio de Goiás - GO	Kale	4-HGI	MT216877
CFC-0936	Samambaia - DF	Kale	4-HGI	MT216889
CFC-0974	Brazlândia - DF	Kale	4-HGI	MT216923
CFC-0885	Gama - DF	Mustard	4-HGI	MT216870
CFC-0992	Vargem Bonita - DF	Purple cabbage	4-HGI	MT216941
CFC-0993	Vargem Bonita - DF	Purple cabbage	4-HGI	MT216942
CFC-0995	Vargem Bonita - DF	Purple cabbage	4-HGI	MT216944
CFC-0997	Vargem Bonita - DF	Purple cabbage	4-HGI	MT216946
CFC-0994	Vargem Bonita - DF	Purple cabbage	А	MT216943
CFC-0937	Samambaia - DF	Radish	4-HGI	MT216890
CFC-0977	Ceilândia - DF	Radish	4-HGI	MT216926
CFC-0978	Ceilândia - DF	Radish	4-HGI	MT216927
CFC-0979	Ceilândia - DF	Radish	4-HGI	MT216928
CFC-0886	Gama - DF	Tomato	4-HGI	MT159528
CFC-0887	Presidente Prudente - SP	Tomato	4-HGI	MT159529
CFC-0888	Capelinha - MG	Tomato	4-HGI	MT159530
CFC-0890	Morrinhos - GO	Tomato	4-HGI	MT159531
CFC-0891	Morrinhos - GO	Tomato	4-HGI	MT159532
CFC-0892	Brasília de Minas - MG	Tomato	4-HGI	MT159533

CFC-0893	Santo Antônio da Fortuna - MT	Tomato	4-HGI	MT159534
CFC-0895	Faxinal - PR	Tomato	4-HGI	MT159535
CFC-0896	Marilândia do Sul - PR	Tomato	4-HGI	MT159536
CFC-0897	Gama - DF	Tomato	4-HGI	MT159537
CFC-0898	Cristalina - GO	Tomato	4-HGI	MT159538
CFC-0899	Boa Esperança - MG	Tomato	4-HGI	MT159539
CFC-0900	Gama - DF	Tomato	4-HGI	MT159540
CFC-0902	Cristalina - GO	Tomato	4-HGI	MT159542
CFC-0903	Rio Verde - GO	Tomato	4-HGI	MT159543
CFC-0907	Cruzália - SP	Tomato	4-HGI	MT159545
CFC-0909	Hidrolândia - GO	Tomato	4-HGI	MT159546
CFC-0910	Brasília - DF	Tomato	4-HGI	MT159547
CFC-0911	Brasília - DF	Tomato	4-HGI	MT159548
CFC-0915	Goianópolis - GO	Tomato	4-HGI	MT159549
CFC-0916	Cocalzinho - GO	Tomato	4-HGI	MT159550
CFC-0917	Cocalzinho - GO	Tomato	4-HGI	MT159551
CFC-0918	Cocalzinho - GO	Tomato	4-HGI	MT159552
CFC-0923	Ceilândia - DF	Tomato	4-HGI	MT159554
CFC-0925	Taquara - DF	Tomato	4-HGI	MT159555
CFC-0928	Ubaporanga - MG	Tomato	4-HGI	MT159556
CFC-0929	Ubaporanga - MG	Tomato	4-HGI	MT159557
CFC-0930	Ubaporanga - MG	Tomato	4-HGI	MT159558

CFC-0931	Ceilândia - DF	Tomato	4-HGI	MT159559
CFC-0948	São Gabriel - GO	Tomato	4-HGI	MT159560
CFC-0949	São Gabriel - GO	Tomato	4-HGI	MT159561
CFC-0901	Cristalina - GO	Tomato	Fa	MT159541
CFC-0904	Taquara - DF	Tomato	Fa	MT159544
CFC-0922	Gama - DF	Tomato	Fa	MT159553

^aCFC = Culture Collection of Phytopathogenic Fungi of Cariri, Universidade Federal do Cariri, Crato, Ceará, Brazil

456 ^bES, Espírito Santo; DF, Distrito Federal; GO, Goiás; MG, Minas Gerais; MT, Mato Grosso; PE, Pernambuco; PR, Paraná; SP, São Paulo States

457 ^c Anastomosis group.

Isolate code	AG ^a	Host plant or substrate	Geographic origin	GenBank accession no.
LDDL04-1	1-IB	White cabbage	Vietnam	KF907717
LDDL05-1	1-IB	White cabbage	Vietnam	KF907718
R147	1-IB	White clover	Japan	AB122139
CBS 206.84	1-IB	Bean	Japan	DQ279038
No-2	2-2IIIB	Maize	Japan	AJ238166
15Rs	2-2IIIB	Junk	Japan	AF354116
SX-RSD1	2-2IIIB	Sugar beet	China	KC413984
SJ07	2-2IIIB	Soybean	Brazil	AY270015
STST03-2	4-HGI	Chinese cabbage	Vietnam	KF907732
HNDD01-4	4 HGI	Turnip cabbage	Vietnam	KF907733
GM-3	4 HGI	Soybean	Japan	AB000018
AH-1	4 HGI	Peanut	Japan	AY154307
Str6	А	Strawberry	Israel	DQ102407
C-662	А	Soil	Japan	AF354092
C-538	А	Potato	Japan	AB196640
Str3	А	Strawberry	Israel	DQ102421
Str10	Fa	Strawberry	Israel	DQ102434
AH-6	Fa	Peanut	Japan	DQ279014
CIMAP MA111	Fa	Mexican marigold	India	KC193238
Y1064	Fa	Yam	South Korea	JX913821
4Wak-600	G	Rose	Japan	AB196658
1Shi-1299	G	Rose	Japan	AB196657
R11	G	Strawberry	Italy	AY927319
AH-9	G	Peanut	Japan	AB196646
18	R	Orchid	China	KY880973
CBS 136.82	R	Taxus	United States	DQ278933
J-04-7	R	Ginger	China	DQ885781
RhMY074WAz3	R	Azalea	United States	HQ269823

GenBank included in the phylogenetic analyses.

^a Anastomosis group

CAPÍTULO III

Usefulness of the RPB2 gene for *Rhizoctonia* anastomosis groups phylogeny and identification

Submissão: European Journal of Plant Pathology Short Communication Dordrech, Holanda JCR = 1,582

1	Usefulness of the RPB2 gene for Rhizoctonia anastomosis groups phylogeny and
2	identification.
3	
4	Graziele S. Lima • Lucas C. S. Amancio • Kledson M. Santos • Ana P. O. Barros • Alexandre
5	R. Machado • Cristina M. Souza-Motta • Kamila C. Correia • Sami J. Michereff
6	
7	G. S. Lima • L. C. S. Amancio • K. M. Santos • A. P. O. Barros
8	Programa de Pós-Graduação em Fitopatologia, Universidade Federal Rural de Pernambuco,
9	52171-900, Recife, PE, Brazil
10	
11	A. R. Machado • C. M. de Souza-Motta
12	Departamento de Micologia, Universidade Federal de Pernambuco, 50740-600, Recife, PE,
13	Brazil
14	
15	K. C. Correia • S. J. Michereff
16	Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, 63133-610,
17	Crato, CE, Brazil
18	
19	S. J. Michereff (🖂)
20	e-mail: sami.michereff@ufca.edu.br
21	ORCID http://orcid.org/0000-0002-2156-3502
22	
23	A. R. Machado
24	ORCID https://orcid.org/0000-0001-7440-3097
25	
26	

27 Abstract The concept of anastomosis group (AG) has been widely used to *Rhizoctonia* genus and it is based on the premise that hyphae of isolates of the same species have the ability 28 to recognize and to fuse within each other. Among Rhizoctonia AGs identification techniques, 29 the study of the ITS region is the most used. However, the variation between its copies and low 30 conservation of this region in the genome, besides the difficulty of aligning sequences, makes 31 it unsuitable for use in phylogenetic studies of this group of fungi. Thus, protein coding regions, 32 single copy in the genome, easy to align and with better species resolution power should be 33 evaluated. The aim of this study was to evaluate the usefulness of the RPB2 gene to Rhizoctonia 34 anastomosis groups phylogeny and identification. Forty isolates of R. solani and binucleate 35 36 Rhizoctonia belonging to different anastomosis groups were used in this study. Genomic DNA 37 was extracted and used to amplify the RPB2 region using RPB2-980F and fRPB2-7cR primers. The PCR amplification products were purified and sequenced in both directions with the same 38 primers used for amplification. The results of the phylogenetic analyses obtained corroborates 39 previous studies and they also confirm the identity of most of the isolates identified by the ITS 40 region. The present study showed that the RPB2 gene has great potential for phylogenetic 41 42 studies of Rhizoctonia anastomosis groups. Besides that, a reference sequences database was generated and it will serve as a standard for comparison in forward studies. 43

44

45 Keywords Bayesian Inference • *Ceratobasidium* sp. • ITS-rDNA • *Thanatephorus cucumeris*46

The genus *Rhizoctonia* was first described in 1815 by DeCandolle, based on the ability of fungi that attack roots, do not produce spores and form sclerotia (Hietala et al. 1994; Stalpers and Anderson 1996). It is a genus composed of species that have a great capacity for saprophytic competition in the soil and cause important diseases in most plants cultivated worldwide, presenting a range of hosts consisting of over 500 species of plants (Ogoshi 1996; Agarwal 2010; Yang and Li 2012; Patil and Solanki 2016).

The concept of anastomosis group (AG) has been used extensively in the genus 53 54 *Rhizoctonia* and is based on the premise that hyphae of isolates of the same species have the ability to recognize and fuse with each other (Ogoshi 1987). Currently, 13 anastomosis groups 55 are recognized in Rhizoctonia solani (with a teleomorph on Thanatephorus), designated AG-1 56 to AG-13. In binucleate Rhizoctonia are recognized around the world 18 AGs with teleomorph 57 in Ceratobasidium, designated AG-A to AG-W (Yang et al. 2015; Aiello et al. 2017) and seven 58 American AGs, named CAG-1 to CAG-7 (Kuramae et al. 2007). In addition to AG, there is 59 also the differentiation of *Rhizoctonia* spp. in intraspecific groups (ISGs), based on biochemical 60 tests, host association, hyphae cell nuclear condition and molecular criteria (Carling et al. 2002). 61 62 The identification of Rhizoctonia spp. AGs or ISGs is very important to understand 63 pathogen genetic diversity, epidemiological and ecological studies, providing an appropriate disease management (Ogoshi 1987). The different Rhizoctonia AGs can respond in different 64 ways to control measures, thus demonstrating the need for adequate and accurate identification 65 of isolates (Campion et al. 2003; Özer and Bayraktar 2015; Patil and Solanki 2016). 66 Molecular techniques have been used for an accurate identification and allocation of 67 Rhizoctonia isolates in many described AGs. Among these techniques, the analysis of the 68 69 internal transcribed spacer (ITS) of ribosomal DNA (rDNA) is the most used (Agarwal 2010; 70 Aiello et al. 2017; Yang et al. 2017; Inokuti et al. 2018; Misawua and Kurose 2019). The ITS rDNA region has universal primers that sufficiently distinguish many species of fungi; presents 71 multicopy nature, which facilitates the amplification of low-quality regions and is also the most 72 73 abundant fungal marker in the databases (Nilsson et al. 2008; Herrera et al. 2009; Schoch et al. 2012). However, genome variation among copies of this region, in addition to the difficulty of 74 75 sequence alignment, due to indel accumulation, population level differences in alleles or 76 heterogeneity of copies, makes it unsuitable for phylogenetic studies on higher taxonomic ranks 77 (Álvarez and Wendel 2003; Avis et al. 2006; Kiss 2012; Větrovský et al. 2016). Thus, the

protein coding regions of single genome copy, easy alignment and better species resolutionshould be evaluated (Glass et al. 2013).

The second largest RNA polymerase II (RPB2) subunit is a protein-coding region of 80 single copy in fungi and very conserved (Malkus et al. 2006). It is considered a suitable 81 alternative for marker for phylogenetic studies at higher taxonomic levels, once that it has 82 greater informativeness and ease sequences aligning (Matheny 2005; Větrovský et al. 2016). 83 This region has been used in phylogenetic analyses of important genus, such as *Botrytis* (Staats 84 et al. 2005), Fusarium (O'Donnell et al. 2013; Lombard et al. 2019), Alternaria (Al Ghafri et 85 al. 2019) and Stagonosporopsis (Jayasiri et al. 2019). Considering all the informations 86 87 presented above, the aim of this study was to evaluate the usefulness of RPB2 gene for 88 Rhizoctonia anastomosis groups phylogeny and identification.

Forty isolates of *Rhizoctonia* belonging to twenty-one anastomosis groups previously
identified by sequencing the ITS rDNA region in previous work (Amancio 2018; Palácio 2020;
Lima 2020 "in prep.") were used in this study (Supplementary Table 1). Many of these isolates
are reference for different anastomosis groups and they were provided by the researchers. The
isolates were deposited in the Culture Collection of Phytopathogenic Fungi of Cariri (CFC) at
the Universidade Federal do Cariri (Crato, Ceará, Brazil).

95 The genomic DNA of each isolate was obtained using the Wizard® Genomic DNA Purification Kit (Promega Corporation, Madison, USA). The primers sensitivity was evaluated 96 with 25 ng/µL of genomic DNA. The RPB2 region was amplified using RPB2-980F (5'-TGY 97 98 CCI GCI GAR ACI CCH GAR GG-3') and fRPB2-7cR (5'- CCC ATR GCT TGY TTR CCC AT-3') primers (Liu et al. 1999; Matheny 2005; Reeb et al. 2004). The polymerase chain 99 100 reaction (PCR) was carried out in a mixture of 12.5 µL containing 6.25 µL de GoTaq® Green 101 Master Mix (2X) (Promega Corporation, Madison, WI), 0.5 µL of each primer, 4.25 µL of 102 nuclease free water and 1 µL of DNA. A negative control (without DNA samples) was included 103 in all PCR reactions. Amplifications were performed using the following program: initial

denaturation at 94 °C for 5 min, followed by 30 cycles of denaturing at 94 °C for 0.45 min,
annealing at 52 °C for 1 min, extension at 72 °C for 2 min, one final extension cycle at 72 °C
for 5 min and final incubation at 4°C.

The PCR amplification products were separated by electrophoresis on 1% agarose gel
in Tris-acetate 1.0 x EDTA acid (TAE), they were stained with GelRed ™ (Biotium Inc.,
Hayward, CA, USA) and photographed under UV light. PCR products were purified using the
ExoProStar 1-step purification kit (GE Healthcare Life Sciences), following the manufacturer's
instructions and they were sequenced in both directions with the same primers used for
amplification.

113 The consensus sequences were assembled using the Staden Package software v. 2.0 114 (Staden et al. 1998) and aligned with sequences from the GenBank database through the online 115 interface MAFFT v.7 (Katoh et al. 2002; Katoh and Standley 2013) with the interactive 116 refinement method G-INS-i and manually corrected in MEGA7 (Kumar et al. 2016).

The RPB2 and ITS sequences of the 40 isolates in this study were submitted to 117 phylogenetic analyses with additional isolates sequences of Thanatephorus sp. and 118 Ceratobasidium sp. recovered from Genbank. Bayesian Inference (BI) analyses applying a 119 120 Monte Carlo Markov chain (MCMC) method were performed with all sequences using 121 MRBayes v. 3.2.6 (Ronquist and Huelsenbeck 2003) implemented on the CIPRES Science 122 Gateway (Miller et al. 2010). The evolution models were selected according to the Akaike Information Criterion (AIC). The SYM+I+G and GTR+I+G models of evolution were used for 123 124 RPB2 in the analyses of multinucleate and binucleate Rhizoctonia, respectively. The HKY+G 125 model was used for ITS analyses of multinucleate and binucleate isolates. Four simultaneous 126 Markov chains have been run for 10000000 generations. The first 25% trees were discarded as 127 the burn-in phase of each analysis. Posterior probabilities were determined from a consensus tree with 75% of the remaining trees. The trees obtained were visualized in the program FigTree 128 129 v.1.4.2 (Rambaut 2014). The RPB2 and ITS sequences of Tulasnella pruinosa (GenBank

Accession N° DQ381839 and DQ457642) were used as outgroup. RPB2 sequences generated
in this study were deposited in GenBank (Suplementary Table 1).

The results of the phylogenetic analyses obtained affirm previous studies and they also confirm the identity of most of the isolates identified by the ITS region (Amancio 2018; Palácio 2020; Lima 2020 "in prep."). The RPB2 region allowed the separation of *Rhizoctonia* anastomosis groups into distinct clades with satisfactory posterior probability values (Figures 1 and 2). The isolates groups sequences AG 2-BI, AG-11 and AG-L do not group up with any other sequence and it was expected, once that there are no reference RPB2 sequences for these anastomosis groups in the databases for comparison.

139 Unlike the others ones, the isolates of the anastomosis groups AG-5 and AG-Bb were 140 not grouped up with the RPB2 sequences available in the GenBank database. The only RPB2 sequence of AG-5 (GM10 isolate) available in the database for comparison was grouped up 141 142 with AG-7 isolates sequences (Figure 1). A similar result was observed by González et al. 143 (2016) which the same isolate AG-5 evaluated in this study was grouped up with the isolate 144 76Rs of the group AG-7. Regarding to AG-Bb, the sequence of the isolate evaluated in this study (MMBF25/11) was close to the available sequence from GenBank (CBS 569.83), in the 145 146 phylogenetic tree, but it had no defined clustering (Figure 2). However, comparing to another 147 isolate ITS sequence available in the database (C-350) (Figure 4), there was the grouping and 148 confirmation of its identity. These results are possibly due to errors in the identification of the isolates available in the database or genetic variations within these anastomosis groups. 149

Although the databases present a considerable amount of sequences of the ITS rDNA region for *Rhizoctonia* spp. from a wide range of anastomosis groups, the use of only this region for analyses of *Rhizoctonia* genus is not suitable. ITS rDNA region presents intragenomic variability that limits fungi study, affecting diversity estimates (Kiss 2012; Lindner et al. 2013). As demonstrated by Nilsson et al. (2008), species of *Thanatephorus cucumeris* (*Rhizoctonia* *solani* teleomorph) have significant intraspecific variability, above the average in representativespecies of the Fungi kingdom.

157 RPB2 is a protein-coding gene, from orthologous nature, which has high phylogenetic informativeness. Its characteristics represents an important advantage for fungi taxonomic 158 identification (Větrovský et al. 2016). This gene region was included in phylogenetic studies of 159 160 Rhizoctonia genus by Gónzalez et al. (2016), evaluating phylogenetic relationships of 161 Rhizoctonia fungi within Cantharellales order, through multilocus analysis. Rentería-Martínez 162 et al. (2018) included it in a multilocus phylogenetic analysis of fungal complex associated with watermelon root rot. Also, through a multilocus analysis, Chavarro-Mesa et al. (2020) used the 163 164 RPB2 region to identify Rhizoctonia isolates associated with signal grass, cowpea and 165 soybeans.

Beyond the use of a single gene region in the phylogenetic analyses, the use of different isolates as reference in several works has been a factor that complicates an accurate identification of *Rhizoctonia*, once that there are no isolates type defined to different anastomosis groups. Thus, there is a need to set reference isolates of *Rhizoctonia* anastomosis groups to be used as standards in phylogenetic analyses, and provide sequences of these to the databases.

The present study showed that RPB2 gene has great potential for phylogenetic studies of *Rhizoctonia* anastomosis groups. Some anastomosis groups do not have RPB2 sequences deposited in the databases and it hinders the current use of this region in studies of genetic diversity. Thereby, we contribute to the increase of a reliable database of sequences which will work as a standard for comparing isolates in forward studies.

177

178
180	Acknowledgments	
-----	-----------------	--

182	The first author thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
183	(CAPES, Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq,
184	Brazil) for a doctorate scholarship. S. J. Michereff also acknowledge the CNPq research
185	fellowship.
186	
187	Compliance with Ethical Standards
188	
189	All principles of ethical and professional conduct have been followed during this research and
190	elaboration of this manuscript.
191	- Conflict of interest - The authors declare that they have no conflict of interest.
192	- Research involving Human Participants and/or Animals - Not applicable
193	- Informed consent - All authors have reviewed the manuscript and approved its submission to
194	the European Journal of Plant Pathology
195	
196 197	References
198	Agarwal, D. K. (2010). Rhizoctonia D.C.: taxonomy, ecology and management. In K. G.
199	Mukerji, & C. Manoharachary (Eds.), Taxonomy and ecology of Indian fungi (pp. 19-50).
200	New Delhi: I. K. International Publishing House.
201	Aiello, D., Guarnaccia, V., Formica, P. T., Hyakumachi, M., & Polizzi, G. (2017). Occurrence
202	and characterisation of Rhizoctonia species causing diseases of ornamental plants in
203	Italy. European Journal of Plant Pathology, 148, 967-982.

- Al Ghafri, A. A., Maharachchikumbura, S. S., Hyde, K. D., Al-Saady, N. A., & Al-Sadi, A. M.
- 205 (2019). A new section and a new species of *Alternaria* from Oman. *Phytotaxa*, 405, 279206 289.
- Álvarez, I. J. F. W., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic
 inference. *Molecular Phylogenetics and Evolution*, 29, 417-434.
- 209 Amancio, L. C. S. (2018) Avaliação de iniciadores específicos para detecção de grupos de
- anastomose de *Rhizoctonia solani*. Thesis (doctorate degree) Universidade Federal
 Rural de Pernambuco. Recife, Pernambuco, Brazil.
- Avis, P. G., Dickie, I. A., & Mueller, G. M. (2006). A 'dirty'business: testing the limitations of
- terminal restriction fragment length polymorphism (TRFLP) analysis of soil fungi. *Molecular Ecology*, 15, 873-882.
- Campion, C., Chatot, C., Perraton, B., & Andrivon, D. (2003). Anastomosis groups,
 pathogenicity and sensitivity to fungicides of *Rhizoctonia solani* isolates collected on
 potato crops in France. *European Journal of Plant Pathology*, *109*, 983-992.
- 218 Carling, D. E., Kuninaga, S., & Brainard, K. A. (2002). Hyphal anastomosis reactions, rDNA-
- internal transcribed spacer sequences, and virulence levels among subsets of *Rhizoctonia solani* anastomosis group-2 (AG-2) and AG-BI. *Phytopathology*, *92*, 43-50.
- Chavarro-Mesa, E., Ceresini, P., Pereira, D., Vicentini, S., Silva, T., Ramos-Molina, L.,
 Negrisoli, M., Schurt, D., & Vieira Júnior, J. R. (2020). A broad diversity survey of
 Rhizoctonia species from the Brazilian Amazon reveals the prevalence of *R. solani* AG-
- 1 IA on signal grass and the new record of AG-1 IF on cowpea and soybeans. *Plant Pathology*, 69, 455-466.
- Glass, D. J., Takebayashi, N., Olson, L. E., & Taylor, D. L. (2013). Evaluation of the
 authenticity of a highly novel environmental sequence from boreal forest soil using
 ribosomal RNA secondary structure modeling. *Molecular Phylogenetics and Evolution*,
 67, 234-245.

- Gónzalez, D., Rodriguez-Carres, M., Boekhout, T., Stalpers, J., Kuramae, E. E., Nakatani, A.
 K., Vilgalys, R., & Cubeta, M. A. (2016). Phylogenetic relationships of *Rhizoctonia* fungi
 within the Cantharellales. *Fungal Biology*, *120*, 603-619.
- Herrera, M. L., Vallor, A. C., Gelfond, J. A., Patterson, T. F., & Wickes, B. L. (2009). Straindependent variation in 18S ribosomal DNA copy numbers in *Aspergillus fumigatus*. *Journal of Clinical Microbiology*, 47, 1325-1332.
- Hietala, A. M., Sen, R., & Lilja, A. (1994). Anamorphic and teleomorphic characteristics of a
 uninucleate *Rhizoctonia* sp. isolated from the roots of nursery grown conifer seedlings. *Mycological Research*, 98, 1044-1050.
- Inokuti, E. M., Reis, A., Ceresini, P. C., Câmara, M. P., & Michereff, S. J. (2018). Diversity
 and pathogenicity of anastomosis groups of *Rhizoctonia* associated with potato stem
- canker and black scurf diseases in Brazil. *European Journal of Plant Pathology*, *153*,
 1333-1339.
- Jayasiri, S. C., Hyde, K. D., Jones, E. B. G., McKenzie, E. H. C., Jeewon, R., Phillips, A. J. L.,
- 244 Bhat, D. J., Wanasinghe, D. N., Liu, J. K., Lu, Y. Z., Kang, J. C., Xu, J., & Karunarathna,
- S. C. (2019). Diversity, morphology and molecular phylogeny of Dothideomycetes on
 decaying wild seed pods and fruits. *Mycosphere*, *10*, 1-186.
- Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version
 7: improvements in performance and usability. *Molecular Biology and Evolution*, *30*,
 772-780.
- Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). MAFFT: a novel method for rapid
 multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research*, *30*, 3059-3066.
- Kiss, L. (2012). Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences
 as species barcodes for Fungi. *Proceedings of the National Academy of Sciences*, *109*,
 E1811-E1811.

256	Kumar, S., Stec	her, G., &	Tamura, K.	(2016).	MEGA7:	molecular	evolutionary	genetics
257	analysis ve	rsion 7.0 fo	r bigger datas	sets. <i>Mole</i>	cular Biolo	ogy and Eve	olution, 33, 18	70-1874.

- Kuramae, E. E., Buzeto, A. L., Nakatani, A. K., & Souza, N. L. (2007). rDNA-based
 characterization of a new binucleate *Rhizoctonia* spp. causing root rot on kale in
 Brazil. *European Journal of Plant Pathology*, *119*, 469-475.
- 261 Lindner, D. L., Carlsen, T., Henrik Nilsson, R., Davey, M., Schumacher, T., & Kauserud, H.
- (2013). Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in
 the internal transcribed spacer rDNA region in fungi. *Ecology and Evolution*, *3*, 17511764.
- Liu, Y. J., Whelen, S., & Hall, B. D. (1999). Phylogenetic relationships among ascomycetes:
 evidence from an RNA polymerse II subunit. *Molecular Biology and Evolution*, *16*,
 1799-1808.
- Lombard, L., Sandoval-Denis, M., Lamprecht, S. C., & Crous, P. W. (2019). Epitypification of
 Fusarium oxysporum-clearing the taxonomic chaos. *Persoonia*, 43, 1-47.
- 270 Malkus, A., Chang, P. F. L., Zuzga, S. M., Chung, K. R., Shao, J., Cunfer, B. M., Arseniuk, E.,

271 & Ueng, P. P. (2006). RNA polymerase II gene (RPB2) encoding the second largest

- protein subunit in *Phaeosphaeria nodorum* and *P. avenaria*. *Mycological Research*, *110*,
 1152-1164.
- Matheny, P. B. (2005). Improving phylogenetic inference of mushrooms with RPB1 and RPB2
 nucleotide sequences (Inocybe; Agaricales). *Molecular Phylogenetics and Evolution*, *35*,
 1-20.
- Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for
 inference of large phylogenetic trees. *Proceedings of the Gateway Computing Environments Workshop (GCE)*, https://doi.org/ 10.1109/GCE.2010.5676129.

- Misawa, T., & Kurose, D. (2019). Anastomosis group and subgroup identification of
 Rhizoctonia solani strains deposited in NARO Genebank, Japan. *Journal of General Plant Pathology*, 85, 282-294.
- Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., & Larsson, K. H. (2008).
 Intraspecific ITS variability in the kingdom Fungi as expressed in the international
 sequence databases and its implications for molecular species identification. *Evolutionary Bioinformatics*, 4, 193-201.
- O'Donnell, K., Rooney, A. P., Proctor, R. H., Brown, D. W., McCormick, S. P., Ward, T. J.,
 Frandson, R. J., Lysoe, E., Rehner, S. A., Aoki, T., & Robert, V. A. (2013). Phylogenetic
 analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising
 all agriculturally and medically important fusaria. *Fungal Genetics and Biology*, *52*, 20-
- 291 31.
- Ogoshi, A. (1987). Ecology and pathogenicity of anastomosis and intraspecific groups of
 Rhizoctonia solani Kuhn. *Annual Review of Phytopathology*, 25, 125-143.
- 294 Ogoshi, A. (1996). Introduction the genus Rhizoctonia. In: B. Sneh, S. Jabaji-Hare, S. Neate,
- G. Dijist (Eds.), *Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control* (pp. 1-9). Dordrecht: Kluwer Academic Publishers.
- Özer, G., & Bayraktar, H. (2015). Characterization and sensitivity to fungicides of *Rhizoctonia*spp. recovered from potato plants in Bolu, Turkey. *Journal of Phytopathology*, *163*, 1118.
- Palácio, P. B. (2020). Diversidade e patogenicidade de grupos de anastomose de *Rhizoctonia*associados com feijão-caupi no cariri cearense. Thesis (master's degree) Universidade
 Federal do Cariri. Crato, Ceará, Brazil.
- Patil, H. J., & Solanki, M. K. (2016). Molecular prospecting: Advancement in diagnosis and
 control of Rhizoctonia solani diseases in plants. In P. Kumar, V. K. Gupta, A. J. Tiwari,

- 305 & M. Kamle (Eds.), *Current trends in plant disease diagnostics and management* 306 *practices* (pp. 165-185). Berna: Springer International.
- Rambaut, A. (2014) *Figtree, a graphical viewer of phylogenetic trees.* 1.4.2 ed. Edinburgh: The
 author, Institute of Evolutionary Biology, University of Edinburgh.
- 309 Reeb, V., Lutzoni, F., & Roux, C. (2004). Contribution of RPB2 to multilocus phylogenetic
- 310 studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the
- 311 lichen-forming Acarosporaceae and evolution of polyspory. *Molecular Phylogenetics*312 *and Evolution*, 32(3), 1036-1060.
- 313 Rentería-Martínez, M. E., Guerra-Camacho, M. A., Ochoa-Meza, A., Moreno-Salazar, S. F.,
- 314 Varela-Romero, A., Gutiérrez-Millán, L. E., & Meza-Moller, A. D. C. (2018). Multilocus
- 315 phylogenetic analysis of fungal complex associated with root rot watermelon in Sonora,
- 316 Mexico. *Mexican Journal of Phytopatholgy*, *36*, 233-255.
- Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under
 mixed models. *Bioinformatics*, *19*, 1572-1574.
- 319 Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen,
- 320 W. & Fungal Barcoding Consortium. (2012). Nuclear ribosomal internal transcribed
- spacer (ITS) region as a universal DNA barcode marker for Fungi. *Proceedings of the National Academy of Sciences*, *109*, 6241-6246.
- Staats, M., van Baarlen, P., & van Kan, J. A. (2005). Molecular phylogeny of the plant
 pathogenic genus *Botrytis* and the evolution of host specificity. *Molecular Biology and Evolution*, 22, 333-346.
- Staden, R., Beal, K. F., & Bonfield, J. K. (1998). The staden package. In: S. Misener, & S. A.
 Krawetz (Eds.), *Bioinformatics Methods and Protocols* (pp. 115-130). Totowa: Humana
 Press.
- Stalpers, J. A., & Andersen, T. F. (1996). A synopsis of the taxonomy of teleomorphs connected
 with *Rhizoctonia* s.l. In: B. Sneh, S. Jabaji-Hare, S. Neate, G. Dijist (Eds.), *Rhizoctonia*

- *species: taxonomy, molecular biology, ecology, pathology and disease control* (pp. 4963). Dordrecht: Kluwer Academic Publishers.
- Větrovský, T., Kolařík, M., Žifčáková, L., Zelenka, T., & Baldrian, P. (2016). The RPB2 gene
 represents a viable alternative molecular marker for the analysis of environmental fungal
 communities. *Molecular Ecology Resources*, *16*, 388-401.
- Yang, G., & Li, C. (2012). General description of Rhizoctonia species complex. In C. J. R.
 Cumagun (Ed.), *Plant Pathology* (pp. 41-52). Rijeka: Intech.
- 338 Yang, S., Min, F., Wang, W., Wei, Q., Guo, M., Gao, Y., Dong, X., & Lu, D. (2017).
- Anastomosis group and pathogenicity of *Rhizoctonia solani* associated with stem canker
- and black scurf of potato in Heilongjiang Province of China. *American Journal of Potato*
- 341 *Research*, *94*, 95-104.
- 342 Yang, Y. G., Zhao, C., Guo, Z. J., & Wu, X. H. (2015). Characterization of a new anastomosis
- group (AG-W) of binucleate *Rhizoctonia*, causal agent for potato stem canker. *Plant Disease*, 99, 1757-1763.

Figure 1 Phylogenetic tree constructed by the Bayesian Inference obtained from the alignment of the sequences of the RPB2 region of the *Rhizoctonia solani* isolates. Numbers at nodes indicate posterior probabilities values. The bar represents the number of changes in the nucleotide sequence of each 100 bp. The isolates of this study are highlighted in bold.

Figure 2 Phylogenetic tree constructed by the Bayesian Inference obtained from the alignment of the sequences of the RPB2 region of the binucleate *Rhizoctonia* isolates. Numbers at nodes indicate posterior probabilities values. The bar represents the number of changes in the nucleotide sequence of each 100 bp. The isolates of this study are highlighted in bold.

Figure 3 Phylogenetic tree constructed by the Bayesian Inference obtained from the alignment of the sequences of the ITS-rDNA region of the *Rhizoctonia solani* isolates. Numbers at nodes indicate posterior probabilities values. The bar represents the number of changes in the nucleotide sequence of each 100 bp. The isolates of this study are highlighted in bold.

360

Figure 4 Phylogenetic tree constructed by the Bayesian Inference obtained from the alignment of the sequences of the ITS-rDNA region of the binucleate *Rhizoctonia* isolates. Numbers at nodes indicate posterior probabilities values. The bar represents the number of changes in the nucleotide sequence of each 100 bp. The isolates of this study are highlighted in bold. **Supplementary Table 1** *Rhizoctonia* isolates used in evaluation of RPB2 gene to detect of anastomosis groups (AGs) and GenBank accession codes for the sequences obtained in this study.

Isolate code	AG ^a	Host plant or	Geographic origin	GenBank accession no.	
		substrate		ITS	RPB2
CS-KA	I-IA	Rice	Japan	MT591306	under deposit
CFC-0947	I-IB	Chinese cabbage	Brazil	MT216900	under deposit
CFC-0984	I-IB	Kale	Brazil	MT216933	under deposit
SHIBA-2	I-IB	Potato	Japan	MT591307	under deposit
TE2-4	2-BI	Soil	Japan	MT591310	under deposit
C-96	2-2IIB	Mat rush	Japan	MT591308	under deposit
RI-64	2-2IV	Beet	Japan	MT591309	under deposit
CMM-1806	3-PT	Potato	Brazil	MT591311	under deposit
AH-1	4-HGI	Peanut	Japan	MT591312	under deposit
CFC-0890	4-HGI	Tomato	Brazil	MT159531	under deposit
CFC-0907	4-HGI	Tomato	Brazil	MT159545	under deposit
CFC-0915	4-HGI	Tomato	Brazil	MT159549	under deposit
CFC-0923	4-HGI	Tomato	Brazil	MT159554	under deposit
CFC-0938	4-HGI	Arugula	Brazil	MT216891	under deposit
MMBF45/11	4-HGII	Beet	United States	MT591313	under deposit
CFC-0154	4-HGIII	Cowpea	Brazil	MW148740	under deposit
CFC-0413	4-HGIII	Cowpea	Brazil	MW148746	under deposit
CFC-0604	4-HGIII	Cowpea	Brazil	MW148752	under deposit
CFC-0610	4-HGIII	Cowpea	Brazil	MW148753	under deposit
CU-8904	5	Squash	China	MT591315	under deposit
HO-1556	7	Soil	Japan	MT591316	under deposit
SqR1	9	Soil	United States	MT591317	under deposit
RH-31	11	Soybean	United States	MT591318	under deposit
CFC-0946	А	Broccoli	Brazil	MT216899	under deposit
CFC-0956	А	Arugula	Brazil	MT216907	under deposit
CFC-0957	А	Arugula	Brazil	MT216908	under deposit
CMM-2473	А	Potato	Brazil	MT591319	under deposit
MMBF38/11	Ba	Soybean	Brazil	MT591320	under deposit
MMBF25/11	Bb	Soybean	United States	MT591321	under deposit

CFC-0901	F	Tomato	Brazil	MT159541	under deposit
CFC-0922	F	Tomato	Brazil	MT159553	under deposit
MMBF40/11	F	Soybean	Brazil	MT591322	under deposit
CFC-0961	G	Broccoli	Brazil	MT216911	under deposit
CFC-0996	G	Broccoli	Brazil	MT216945	under deposit
MMBF39/11	G	Soybean	Brazil	MT591323	under deposit
CFC-0176	L	Cowpea	Brazil	MW182420	under deposit
CFC-0596	L	Cowpea	Brazil	MW182424	under deposit
MMBF35/11	Р	Soybean	Brazil	MT591324	under deposit
CFC-0967	R	Chinese cabbage	Brazil	MT216917	under deposit
CMM-1315	R	Potato	Brazil	MT591325	under deposit

369 ^a Anastomosis group

Isolate code	AG ^a	Host plant or	Geographic	GenBank accession no.		
		substrate	origin	ITS	RPB2	
CBS 700.82	1-IA	Water hyacinth	Panama	KP171634	DQ301727	
CBS 206.84	1-IB	Bean	Japan	DQ279038	DQ301747	
AI1-4	2-BI	Soil	Japan	AB054874	-	
SHC81	2-BI	Soil	Japan	AB054877	-	
SJ07	2-IIIB	Soybean	Brazil	AY270015	DQ401755	
SA1-1	2-2IV	Soybean	Japan	KP171635	DQ301734	
Rhs1AP	3-PT	Potato	United States	KP171636	DQ301735	
CBS 200.25	3-PT	Potato	NA	DQ278994	DQ301746	
SJ02	4-HGI	Soybean	Japan	AY270003	DQ301754	
Rh-165	4-HGII	Beet	United States	AB000033	DQ301737	
187-Rs	4-HGIII	Peanut	United States	AY154309	DQ301738	
GM10	5	Soybean	Japan	KP171637	DQ301739	
76-Rs	7	Soil	Japan	AF354096	DQ301741	
S-21	9	Soil	United States	KP171638	DQ301742	
CBS 970.96	9	Potato	United States	DQ279005	DQ301752	
Roth16	11	Soybean	United States	AF354114	-	
C-538	А	Potato	Japan	DQ279052	DQ301695	
C-484	Ba	Rice	Japan	AB196641	DQ301696	
CBS 569.83	Bb	Orchid	Australia	DQ278942	DQ301723	
C-350	Bb	Rice	Japan	AB122144	-	
AH-6	F	Peanut	Japan	DQ279014	DQ301700	
CeDAGO5	F	Watermelon	Mexico	KX583256	KY637074	
AH-9	G	Peanut	Japan	AB196646	DQ301701	
FKO-2-11	L	Soil	Japan	AB286934	-	
FKO-2-26	L	Soil	Japan	AB196653	-	
C-158	Р	Green tea	Japan	DQ279015	DQ301705	
CBS 136.82	R	Yew tree	United States	DQ278933	DQ301710	

371 GenBank included in the phylogenetic analyses

^a Anastomosis group

Conclusões Gerais

CONCLUSÕES GERAIS

- A rizoctoniose das brássicas e do tomateiro no Brasil é causada por isolados binucleados e multinucleados de *Rhizoctonia*.
- 2. AG-1-IB, AG-2-2IIIB, AG-4-HGI, AG-A, AG-G e AG-R estão associados a brássicas e AG4-HGI e AG-F estão associados ao tomate no Brasil.
- 3. AG-4-HGI é o grupo de anastomose predominante, amplamente distribuído em todas as áreas de produção de brássicas e tomate.
- Este foi o primeiro relato da ocorrência de AG-F associado ao tomate e AG-4-HGI, AG-2-2IIIB, AG-A, AG-G e AG-R associados a brássicas no Brasil.
- 5. Todos os isolados de tomate foram patogênicos, causando podridão em frutos, não havendo diferença significativa entre os AGs obtidos.
- 6. Isolados AG-A não foram patogênicos às folhas de couve destacadas. AGs dos isolados obtidos em brássicas diferiram quanto à agressividade. AG-4-HGI e AG-2-2IIIB foram significativamente mais agressivos às folhas destacadas de couve.
- 7. O gene RPB2 tem um grande potencial para o estudo filogenético de AGs de Rhizoctonia.
- O presente estudo gerou um banco de sequências RPB2 de AGs de *Rhizoctonia* que servirá como padrão para comparação em estudos futuros.